

Lesson 17 Practice Problems

1. Find the solution or solutions to each equation.

a.
$$x^{2} + 0.5x - 14 = 0$$

b. $x^{2} + 12x + 36 = 0$
c. $x^{2} - 3x + 8 = 0$
d. $x^{2} + 4 = 0$

- 2. Which describes the solutions to the equation $x^2 + 7 = 0$?
 - A. One real solution
 - B. Two real solutions
 - C. One non-real solution
 - D. Two non-real solutions
- 3. Explain how you know $\sqrt{3x+2} = -16$ has no solutions.

(From Unit 3, Lesson 7.)

4. Determine the number of real solutions and non-real solutions to each equation. Use the graphs; don't do any calculations to find the solutions.

a. $x^2 - 6x + 7 = 0$	$y = x^2 - 6x + 7$
b. $3x^2 + 2x + 1 = 0$	
c. $-x^2 - 3x + 2 = 0$	-8 -6 -4 -2 - 8 -6 8
d. $x^2 - 6x + 7 = -2$	
e. $-x^2 - 3x + 2 = 6$	-8

f. $3x^2 + 2x + 1 = 2$

 $y = 3x^2 + 2x + 1$

 $y = -x^2 - 3x + 2$

5. a. Write $(5 - 5i)^2$ in the form a + bi, where *a* and *b* are real numbers.

b. Write $(5-5i)^4$ in the form a + bi, where *a* and *b* are real numbers.

(From Unit 3, Lesson 14.)

6. What number *n* makes this equation true?

$$x^{2} + 11x + \frac{121}{4} = (x + n)^{2}$$
A. $\frac{11}{4}$
B. $\frac{11}{2}$
C. 11
D. $\frac{121}{4}$

(From Unit 3, Lesson 16.)