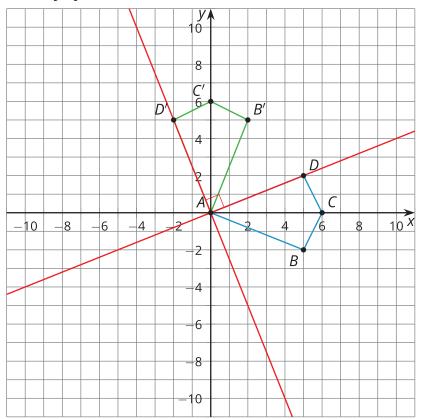

Unit 6 Lesson 11: Perpendicular Lines in the Plane

1 Revisiting Transformations (Warm up)


Student Task Statement

The image shows quadrilateral *ABCD*.

Apply the transformation rule $(x, y) \rightarrow (-y, x)$ to quadrilateral *ABCD*. What is the effect of the transformation rule?

Activity Synthesis

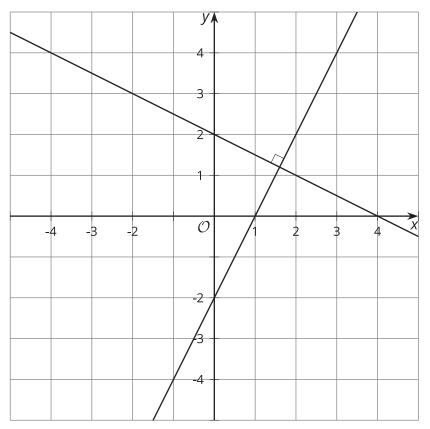
2 Make a Conjecture

Student Task Statement

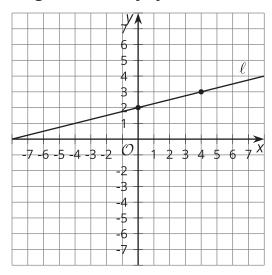
1. Complete the table with the slope of each segment from the warm-up.

	original figure slope	image slope	product
AB			
BC			
CD			
DA			

2. The image in the warm-up is a 90-degree rotation of the original figure, so each line in the original figure is perpendicular to the corresponding line in the image. Use your slope calculations to make a conjecture about slopes of perpendicular lines.


3 Prove It

Student Task Statement


Let's prove our conjecture about slopes of perpendicular lines for the case where the lines pass through the origin.

- 1. Find the slope of a line passing through the point (*a*, *b*) and the origin. Assume the line is not horizontal or vertical.
- 2. Suppose the line is rotated using the transformation rule $(x, y) \rightarrow (-y, x)$. Find the coordinates of the images of the points (a, b) and the origin.
- 3. How does the original line relate to the image?
- 4. Find the slope of the image.
- 5. Compare your slopes. What did you just prove?

Activity Synthesis

Images for Activity Synthesis

