## Lesson 15 Practice Problems

1. Here is a graph of a trigonometric function. Which equation could define this function?

A. $y=1.5 \sin (x)-4$
B. $y=1.5 \cos (x)-4$
C. $y=-4 \sin (1.5 x)$
D. $y=-4 \cos (1.5 x)$
2. Select all the functions that have period $\pi$.
A. $y=\cos \left(\frac{x}{2}\right)$
B. $y=\sin \left(\frac{x}{2}\right)$
C. $y=\cos (x)$
D. $y=\cos (2 x)$
E. $y=\sin (2 x)$
3. a. Sketch a graph of $a(\theta)=\cos (3 \theta)$.
b. Compare the graph of $a$ to the graph of $b(\theta)=\cos (\theta)$. How are the two graphs alike? How are they different?

4. The functions $f$ and $g$ are given by $f(x)=\cos (x)$ and $g(x)=\cos (5 x)$. How are the graphs of $f$ and $g$ related?
5. Here is a point at the tip of a windmill blade. The center of the windmill is 6 feet off the ground and the blades are 1.5 feet long.

Write an equation giving the height $h$ of the point $P$ after the windmill blade rotates by an angle of $a$. Point $P$ is currently rotated $\frac{\pi}{4}$ radians from the point directly to the right of the center of the windmill.

6. The coordinates of $P$ are $(1,0)$.

a. If the wheel makes a $\frac{1}{3}$ rotation counterclockwise around its center, what radian angle does $P$ rotate through?
b. If the wheel makes a $1 \frac{1}{4}$ rotation counterclockwise around its center, what radian angle does $P$ rotate through?
(From Unit 6, Lesson 3.)
7. A Ferris wheel has a radius of 95 feet and its center is 105 feet above the ground. Which statement is true about a point on the Ferris wheel as it goes around in a circle?
A. It is 85 feet off the ground once in quadrant 1 and once in quadrant 2 .
B. It is is 85 feet off the ground once in quadrant 2 and once in quadrant 3 .
C. It is 85 feet off the ground once in quadrant 3 and once in quadrant 4 .
D. It is 85 feet off the ground once in quadrant 4 and once in quadrant 1 .

