Unit 6 Lesson 3: Types of Transformations
 1 Why is it a Dilation? (Warm up)

Student Task Statement

Point B was transformed using the coordinate rule $(x, y) \rightarrow(3 x, 3 y)$.

1. Add these auxiliary points and lines to create 2 right triangles: Label the origin P. Plot points $M=(2,0)$ and $N=(6,0)$. Draw segments $P B^{\prime}, M B$, and $N B^{\prime}$.
2. How do triangles $P M B$ and $P N B^{\prime}$ compare? How do you know?
3. What must be true about the ratio $P B: P B^{\prime}$?

2 Congruent, Similar, Neither?

Student Task Statement

Match each image to its rule. Then, for each rule, decide whether it takes the original figure to a congruent figure, a similar figure, or neither. Explain or show your reasoning.

C

1. $(x, y) \rightarrow\left(\frac{x}{2}, \frac{y}{2}\right)$
2. $(x, y) \rightarrow(y,-x)$
3. $(x, y) \rightarrow(-2 x, y)$
4. $(x, y) \rightarrow(x-4, y-3)$

D

3 You Write the Rules

Student Task Statement

1. Write a rule that will transform triangle $A B C$ to triangle $A^{\prime} B^{\prime} C^{\prime}$.
2. Are $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ congruent? Similar? Neither? Explain how you know.
3. Write a rule that will transform triangle $D E F$ to triangle $D^{\prime} E^{\prime} F^{\prime}$.
4. Are $D E F$ and $D^{\prime} E^{\prime} F^{\prime}$ congruent? Similar? Neither? Explain how you know.
