Lesson 10 Practice Problems

1. A rotation takes P to Q. What could be the measure of the angle of rotation in radians? Select all that apply.

A. $\frac{3 \pi}{2}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{4}$
D. $\frac{5 \pi}{2}$
E. $\frac{5 \pi}{4}$
2. a. A $\frac{2 \pi}{3}$ radian rotation takes N to P. Label P.
b. A $\frac{7 \pi}{6}$ radian rotation takes N to Q. Label Q.
c. A $\frac{25 \pi}{6}$ radian rotation takes N to R. Label R.

3. Here is a wheel with radius 1 foot.

a. List three different counterclockwise angles the wheel can rotate so that point P ends up at position Q.
b. How many feet does the wheel roll for each of these angles?
4. The point P on the unit circle is in the 0 radian position.
a. Which counterclockwise rotations take P back to itself? Explain how you know.
b. Which counterclockwise rotations take P to the opposite point on the unit circle? Explain how you know.
5. Here is the unit circle with a point P at $(1,0)$. Find the coordinates of P after the circle rotates the given amount counterclockwise around its center.

a. $\frac{1}{3}$ of a full rotation
b. $\frac{1}{2}$ of a full rotation
c. $\frac{2}{3}$ of a full rotation
(From Unit 6, Lesson 4.)
6. Here is a graph of $y=\sin (\theta)$.
a. Plot the points on the graph where $\sin (\theta)=-\frac{1}{2}$.
b. For which angles θ does $\sin (\theta)=-\frac{1}{2}$?

(From Unit 6, Lesson 9.)
