Unit 6 Lesson 12: Changing the Equation

1 Math Talk: A Negative Input (Warm up)

Student Task Statement

Evaluate each expression when *x* is -5:

-2x x^{2} $-2x^{2}$ $-x^{2}$

2 Equations and Their Graphs

Student Task Statement

1. Two students are evaluating $x^2 + 7$ when x is -3. Here is their work. Do you agree with either of them? Explain your reasoning.

7

Tyler:	Lin:
$x^2 + 7$	$x^2 + 7$
$-3^2 + 7$	$(-3)^2 +$
-9 + 7	9 + 7
-2	16

- 2. Evaluate each expression when *x* is -4:
 - a. x^2 b. $\frac{1}{2}x^2$ c. $-\frac{1}{8}x^2$ d. $-x^2 - 8$
- 3. Using graphing technology, graph y = x. Then, experiment with the following changes to the function. Record your observations (include sketches, if helpful).
 - a. Adding different constant terms to x (for example: x + 4, x 3).
 - b. Multiplying x by different positive coefficients greater than 1 (for example: 6x, 2.5x).
 - c. Multiplying x by different positive coefficients between 0 and 1 (for example: 0.25x, 0.1x).
 - d. Multiplying x by negative coefficients (for example: -9x, -4x).

4. Use your observations to sketch these functions on the coordinate plane, which currently shows y = x.

3 Match the Graphs

Student Task Statement

d. $-x^2 + 20$

1. Evaluate each expression when x is -3. a. x^2 b. $-x^2$ c. $x^2 + 20$ 2. For each graph, come up with an equation that the graph could represent. Verify your equation using graphing technology.

