

Lesson 5 Practice Problems

)
•

3. A triangle has an area of 6 square inches and a perimeter of 12 inches. Suppose it is dilated by some scale factor, and the area and perimeter of the image are calculated. Match each graph with the relationship it represents.

Graph A

Graph B

Graph C

Graph D

- A. Graph A
- B. Graph B
- C. Graph C
- D. Graph D

- 1. scale factor is the *x*-value; perimeter is the *y*-value
- 2. scale factor is the *x*-value; area is the *y*-value
- 3. perimeter is the *x*-value; scale factor is the *y*-value
- 4. area is the *x*-value; scale factor is the *y*-value

4. A polygon with area 10 square units is dilated by a scale factor of k. Find the area of the image for each value of k.

a.
$$k = 4$$

b.
$$k = 1.5$$

c.
$$k = 1$$

d.
$$k = \frac{1}{3}$$

(From Unit 5, Lesson 4.)

5. Parallelogram AB'C'D' was obtained by dilating parallelogram ABCD using A as the center of dilation.

- a. What was the scale factor of the dilation?
- b. How many congruent copies of ABCD have we fit inside AB'C'D'?
- c. How does the area of parallelogram $AB^{\prime}C^{\prime}D^{\prime}$ compare to parallelogram ABCD?
- d. If parallelogram ABCD has area 12 square units, what is the area of parallelogram AB'C'D'?

(From Unit 5, Lesson 4.)

- 6. Select **all** solids whose cross sections are dilations of some two-dimensional shape using a point directly above the shape as a center and scale factors ranging from 0 to 1.
 - A. cylinder
 - B. cube
 - C. triangular prism
 - D. cone
 - E. triangular pyramid

(From Unit 5, Lesson 3.)

7. Select **all** expressions which give the measure of angle A.

- A. $\arccos\left(\frac{28}{53}\right)$
- B. $\arccos\left(\frac{45}{53}\right)$
- C. $\arcsin\left(\frac{28}{53}\right)$
- D. $\arcsin\left(\frac{45}{53}\right)$
- E. $\arctan\left(\frac{28}{45}\right)$
- F. $\arctan\left(\frac{45}{28}\right)$

(From Unit 4, Lesson 9.)