Lesson 21 Practice Problems

1. Match each expression to an equivalent expression.
A. $\sqrt{5} \pm \sqrt{3}$
2. 3 and 7
B. $1 \pm \sqrt{3}$
3. $\sqrt{5}+\sqrt{3}$ and $\sqrt{5}-\sqrt{3}$
C. $\sqrt{3} \pm 1$
4. -6 and 0
D. 5 ± -2
5. $\sqrt{3}+1$ and $\sqrt{3}-1$
E. -3 ± -3
6. $1+\sqrt{3}$ and $1-\sqrt{3}$
(From Unit 7, Lesson 15.)
7. Consider the statement: "An irrational number multiplied by an irrational number always makes an irrational product."

Select all the examples that show that this statement is false.
A. $\sqrt{4} \cdot \sqrt{5}$
B. $\sqrt{4} \cdot \sqrt{4}$
C. $\sqrt{7} \cdot \sqrt{7}$
D. $\frac{1}{\sqrt{5}} \cdot \sqrt{5}$
E. $\sqrt{0} \cdot \sqrt{7}$
F. $-\sqrt{5} \cdot \sqrt{5}$
G. $\sqrt{5} \cdot \sqrt{7}$
3. a. Where is the vertex of the graph that represents $y=(x-3)^{2}+5$?
b. Does the graph open up or down? Explain how you know.
4. Here are the solutions to some quadratic equations. Decide if the solutions are rational or irrational.
$3 \pm \sqrt{2}$
$\sqrt{9} \pm 1$
$\frac{1}{2} \pm \frac{3}{2}$
10 ± 0.3
$\frac{1 \pm \sqrt{8}}{2}$
$-7 \pm \sqrt{\frac{4}{9}}$
5. Find an example that shows that the statement is false.
a. An irrational number multiplied by an irrational number always makes an irrational product.
b. A rational number multiplied by an irrational number never gives a rational product.
c. Adding an irrational number to an irrational number always gives an irrational sum.
6. Which equation is equivalent to $x^{2}-3 x=\frac{7}{4}$ but has a perfect square on one side?
A. $x^{2}-3 x+3=\frac{19}{4}$
B. $x^{2}-3 x+\frac{3}{4}=\frac{10}{4}$
C. $x^{2}-3 x+\frac{9}{4}=\frac{16}{4}$
D. $x^{2}-3 x+\frac{9}{4}=\frac{7}{4}$
(From Unit 7, Lesson 13.)
7. A student who used the quadratic formula to solve $2 x^{2}-8 x=2$ said that the solutions are $x=2+\sqrt{5}$ and $x=2-\sqrt{5}$.
a. What equations can we graph to check those solutions? What features of the graph do we analyze?
b. How do we look for $2+\sqrt{5}$ and $2-\sqrt{5}$ on a graph?
(From Unit 7, Lesson 18.)
8. Here are 4 graphs. Match each graph with a quadratic equation that it represents.

Graph A

Graph C

A. Graph A
B. Graph B
C. Graph C
D. Graph D

Graph B

Graph D

1. $y=(x+4)^{2}-3$
2. $y=(x-4)^{2}-3$
3. $y=(x+4)^{2}+3$
4. $y=(x-4)^{2}+3$
(From Unit 6, Lesson 15.)
