

Lesson 6 Practice Problems

1. The picture shows angles A and B. Explain why sin(B) = -sin(A) and why cos(B) = -cos(A).

- 2. Which statements are true? Select all that apply.
 - A. $\sin(\theta) > 0$ for an angle θ in quadrant 2
 - B. $cos(\theta) > 0$ for an angle θ in quadrant 2
 - C. $tan(\theta) > 0$ for an angle θ in quadrant 2
 - D. $sin(\theta) > 0$ for an angle θ in quadrant 3
 - E. $cos(\theta) > 0$ for an angle θ in quadrant 3
 - F. $tan(\theta) > 0$ for an angle θ in quadrant 3
- 3. The tangent of an angle satisfies $tan(\theta) = 10$.
 - a. Which quadrant could $\boldsymbol{\theta}$ lie in? Explain how you know.
 - b. Estimate the possible value(s) of θ . Explain your reasoning.

4. Evaluate each of the following:

a.
$$\tan\left(\frac{5\pi}{4}\right)$$

b.
$$\sin\left(\frac{3\pi}{2}\right)$$

c.
$$\cos\left(\frac{7\pi}{4}\right)$$

5. The sine of an angle θ in the second quadrant is 0.6. What is $\tan(\theta)$? Explain how you know.

6. Triangle *ABC* is an isosceles right triangle in the unit circle.

- a. Explain why sin(A) = cos(A).
- b. Use the Pythagorean Theorem to explain why $2(\sin(A))^2 = 1$.

(From Unit 6, Lesson 5.)

7. Triangle DEF is similar to triangle ABC. The scale factor going from $\triangle DEF$ to $\triangle ABC$ is 3.

- a. Explain why the length of segment AB is 3 times the length of segment DE and the length of segment BC is 3 times the length of segment EF.
- b. Explain why sin(A) = sin(D).

(From Unit 6, Lesson 2.)

8. Which of the following is true for angle θ ? Select **all** that apply.

- A. $sin(\theta) < 0$
- B. $sin(\theta) > 0$
- $C. \cos(\theta) < 0$
- D. $cos(\theta) > 0$
- E. $\sin(\theta) > \cos(\theta)$
- F. $\sin(\theta) < \cos(\theta)$

(From Unit 6, Lesson 5.)