Lesson 6 Practice Problems

1. The picture shows angles A and B. Explain why $\sin (B)=-\sin (A)$ and why $\cos (B)=-\cos (A)$.

2. Which statements are true? Select all that apply.
A. $\sin (\theta)>0$ for an angle θ in quadrant 2
B. $\cos (\theta)>0$ for an angle θ in quadrant 2
C. $\tan (\theta)>0$ for an angle θ in quadrant 2
D. $\sin (\theta)>0$ for an angle θ in quadrant 3
E. $\cos (\theta)>0$ for an angle θ in quadrant 3
F. $\tan (\theta)>0$ for an angle θ in quadrant 3
3. The tangent of an angle satisfies $\tan (\theta)=10$.
a. Which quadrant could θ lie in? Explain how you know.
b. Estimate the possible value(s) of θ. Explain your reasoning.
4. Evaluate each of the following:
a. $\tan \left(\frac{5 \pi}{4}\right)$
b. $\sin \left(\frac{3 \pi}{2}\right)$
c. $\cos \left(\frac{7 \pi}{4}\right)$
5. The sine of an angle θ in the second quadrant is 0.6 . What is $\tan (\theta)$? Explain how you know.
6. Triangle $A B C$ is an isosceles right triangle in the unit circle.

a. Explain why $\sin (A)=\cos (A)$.
b. Use the Pythagorean Theorem to explain why $2(\sin (A))^{2}=1$.
7. Triangle $D E F$ is similar to triangle $A B C$. The scale factor going from $\triangle D E F$ to $\triangle A B C$ is 3 .

a. Explain why the length of segment $A B$ is 3 times the length of segment $D E$ and the length of segment $B C$ is 3 times the length of segment $E F$.
b. Explain why $\sin (A)=\sin (D)$.
8. Which of the following is true for angle θ ? Select all that apply.

A. $\sin (\theta)<0$
B. $\sin (\theta)>0$
C. $\cos (\theta)<0$
D. $\cos (\theta)>0$
E. $\sin (\theta)>\cos (\theta)$
F. $\sin (\theta)<\cos (\theta)$
(From Unit 6, Lesson 5.)
