

Lesson 4 Practice Problems

1. Angle ABC measures $\frac{\pi}{3}$ radians, and the coordinates of C are about (0.5, 0.87).

a. The measure of angle ABD is $\frac{2\pi}{3}$ radians. What are the approximate coordinates of D? Explain how you know.

b. The measure of angle ABE is $\frac{5\pi}{3}$ radians. What are the approximate coordinates of E? Explain how you know.

2. Give an angle of rotation centered at the origin that sends point P to a location whose (x, y) coordinates satisfy the given conditions.

a.
$$x > 0$$
 and $y < 0$

b.
$$x < 0$$
 and $y > 0$

c.
$$y < 0$$
 and $x < 0$

- 3. Lin calculates $0.97^2 + 0.26^2$ and finds that it is 1.0085.
 - a. Explain why (0.97, 0.26) is not on the unit circle.
 - b. Is (0.97,0.26) a good estimate for the coordinates of a point on the unit circle? Explain how you know.
- 4. The x-coordinate of a point P on the unit circle is 0. If point P is the result of rotating the point (1,0) by θ radians counterclockwise about the origin, what angle could θ represent? Select **all** that apply.
 - A. 0
 - B. $\frac{\pi}{2}$
 - C. *π*
 - D. $\frac{3\pi}{2}$
 - E. 2π

5. Here is triangle ABC. BC is shorter than AC. Which statements are true? Select **all** that apply.

- A. sin(A) > 1
- $B. \tan(A) < 1$
- $C. \cos(A) < 1$
- D. sin(A) < sin(B)
- $\mathsf{E.}\,\cos(A)<\cos(B)$
- F. tan(A) < tan(B)

(From Unit 6, Lesson 2.)

6. Angle POQ measures one radian. The radius of the circle is 1 unit.

- a. What is the length of arc PQ?
- b. Explain why the length of arc PQ is less than $\frac{1}{6}$ of the full circle.

(From Unit 6, Lesson 3.)

7. Label these points on the unit circle:

- a. Q is the image of P after a $\frac{11\pi}{6}$ rotation with center O.
- b. R is the image of P after a $\frac{3\pi}{2}$ rotation with center O.
- c. U is the image of P after a $\frac{2\pi}{3}$ rotation with center O.
- d. V is the image of P after a $\frac{\pi}{3}$ rotation with center O.

(From Unit 6, Lesson 3.)