Lesson 20 Practice Problems

1. Decide whether each number is rational or irrational.
10
$\begin{array}{lll}\frac{4}{5} & \sqrt{4} & \sqrt{10}\end{array}$
-3
$\sqrt{\frac{25}{4}} \quad \sqrt{0.6}$
2. Here are the solutions to some quadratic equations. Select all solutions that are rational.
A. 5 ± 2
B. $\sqrt{4} \pm 1$
C. $\frac{1}{2} \pm 3$
D. $10 \pm \sqrt{3}$
E. $\pm \sqrt{25}$
F. $1 \pm \sqrt{2}$
3. Solve each equation. Then, determine if the solutions are rational or irrational.
a. $(x+1)^{2}=4$
b. $(x-5)^{2}=36$
c. $(x+3)^{2}=11$
d. $(x-4)^{2}=6$
4. Here is a graph of the equation $y=81(x-3)^{2}-4$.
a. Based on the graph, what are the solutions to the equation $81(x-3)^{2}=4$?

b. Can you tell whether they are rational or irrational? Explain how you know.
c. Solve the equation using a different method and say whether the solutions are rational or irrational. Explain or show your reasoning.
5. Match each equation to an equivalent equation with a perfect square on one side.
A. $x^{2}-9 x=\frac{1}{2}$
6. $(x-2.5)^{2}=17.25$
B. $x^{2}+6.4 x-8.9=0$
7. $\left(x-\frac{9}{2}\right)^{2}=\frac{83}{4}$
C. $x^{2}-5 x=11$
8. $\left(x-\frac{3}{7}\right)^{2}=\frac{10}{49}$
D. $x^{2}+0.1 x+0.0005=0$
9. $(x+0.05)^{2}=0.002$
E. $x^{2}-\frac{6}{7} x=\frac{1}{49}$
10. $(x+3.2)^{2}=19.14$
F. $x^{2}+1.21 x=6.28$
11. $(x+0.605)^{2}=6.646025$
(From Unit 7, Lesson 13.)
12. To derive the quadratic formula, we can multiply $a x^{2}+b x+c=0$ by an expression so that the coefficient of x^{2} is a perfect square and the coefficient of x is an even number.
a. Which expression, $a, 2 a$, or $4 a$, would you multiply $a x^{2}+b x+c=0$ by to get started deriving the quadratic formula?
b. What does the equation $a x^{2}+b x+c=0$ look like when you multiply both sides by your answer?
(From Unit 7, Lesson 19.)
13. Here is a graph that represents $y=x^{2}$.

On the same coordinate plane, sketch and label the graph that represents each equation:
a. $y=-x^{2}-4$
b. $y=2 x^{2}+4$

(From Unit 6, Lesson 12.)
8. Which quadratic expression is in vertex form?
A. $x^{2}-6 x+8$
B. $(x-6)^{2}+3$
C. $(x-3)(x-6)$
D. $(8-x) x$
(From Unit 6, Lesson 15.)
9. Function f is defined by the expression $\frac{5}{x-2}$.
a. Evaluate $f(12)$.
b. Explain why $f(2)$ is undefined.
c. Give a possible domain for f.

