

Lesson 20 Practice Problems

- 1. Decide whether each number is rational or irrational.
 - 10 $\frac{4}{5}$ $\sqrt{4}$ $\sqrt{10}$ -3 $\sqrt{\frac{25}{4}}$ $\sqrt{0.6}$
- 2. Here are the solutions to some quadratic equations. Select **all** solutions that are rational.
 - A. 5 ± 2 B. $\sqrt{4} \pm 1$ C. $\frac{1}{2} \pm 3$ D. $10 \pm \sqrt{3}$ E. $\pm \sqrt{25}$ F. $1 \pm \sqrt{2}$
- 3. Solve each equation. Then, determine if the solutions are rational or irrational.

a.
$$(x+1)^2 = 4$$

b. $(x-5)^2 = 36$

c.
$$(x+3)^2 = 11$$

d.
$$(x-4)^2 = 6$$

- 4. Here is a graph of the equation $y = 81(x 3)^2 4$.
 - a. Based on the graph, what are the solutions to the equation $81(x 3)^2 = 4$?

y f					
	(2.778,	0)	(3	.222,	0)
<u>-1</u> O	1 2	2 3	4	1 <u>5</u>	5 <i>X</i>
-2		V			
-4					

- b. Can you tell whether they are rational or irrational? Explain how you know.
- c. Solve the equation using a different method and say whether the solutions are rational or irrational. Explain or show your reasoning.
- 5. Match each equation to an equivalent equation with a perfect square on one side.

A. $x^2 - 9x = \frac{1}{2}$	$1. (x - 2.5)^2 = 17.25$
B. $x^2 + 6.4x - 8.9 = 0$	2. $(x - \frac{9}{2})^2 = \frac{83}{4}$
C. $x^2 - 5x = 11$	3. $(x - \frac{3}{7})^2 = \frac{10}{49}$
D. $x^2 + 0.1x + 0.0005 = 0$	$4. (x + 0.05)^2 = 0.002$
E. $x^2 - \frac{6}{7}x = \frac{1}{49}$	5. $(x + 3.2)^2 = 19.14$
F. $x^2 + 1.21x = 6.28$	6. $(x + 0.605)^2 = 6.646025$

(From Unit 7, Lesson 13.)

- 6. To derive the quadratic formula, we can multiply $ax^2 + bx + c = 0$ by an expression so that the coefficient of x^2 is a perfect square and the coefficient of x is an even number.
 - a. Which expression, *a*, 2*a*, or 4*a*, would you multiply $ax^2 + bx + c = 0$ by to get started deriving the quadratic formula?
 - b. What does the equation $ax^2 + bx + c = 0$ look like when you multiply both sides by your answer?

(From Unit 7, Lesson 19.)

7. Here is a graph that represents $y = x^2$.

On the same coordinate plane, sketch and label the graph that represents each equation:

a.
$$y = -x^2 - 4$$

b. $y = 2x^2 + 4$

(From Unit 6, Lesson 12.)

8. Which quadratic expression is in vertex form?

A.
$$x^2 - 6x + 8$$

B. $(x - 6)^2 + 3$
C. $(x - 3)(x - 6)$

D.
$$(8 - x)x$$

(From Unit 6, Lesson 15.)

9. Function *f* is defined by the expression $\frac{5}{x-2}$.

- a. Evaluate f(12).
- b. Explain why f(2) is undefined.
- c. Give a possible domain for f.

