

Lesson 15 Practice Problems

1. Solve each equation and write the solutions using \pm notation.

- a. $x^{2} = 144$ b. $x^{2} = 5$ c. $4x^{2} = 28$ d. $x^{2} = \frac{25}{4}$ e. $2x^{2} = 22$ f. $7x^{2} = 16$
- 2. Match each expression to an equivalent expression.

A. 4 ± 1	117 and 5
B. $10 \pm \sqrt{4}$	2. 4 + $\sqrt{2}$ and 4 - $\sqrt{2}$
C6 ± 11	3. 8 and 12
D. $4 \pm \sqrt{10}$	4. 3 and 5
E. $\sqrt{16} \pm \sqrt{2}$	5. 4 + $\sqrt{10}$ and 4 - $\sqrt{10}$

3. a. Is $\sqrt{4}$ a positive or negative number? Explain your reasoning.

b. Is $\sqrt{5}$ a positive or negative number? Explain your reasoning.

c. Explain the difference between $\sqrt{9}$ and the solutions to $x^2 = 9$.

4. *Technology required*. For each equation, find the exact solutions by completing the square and the approximate solutions by graphing. Then, verify that the solutions found using the two methods are close.

$$x^2 + 10x + 8 = 0 \qquad \qquad x^2 - 4x - 11 = 0$$

5. Jada is working on solving a quadratic equation, as shown here.

$p^2 - 5p = 0$	She thinks that her solution is correct because
p(p-5) = 0	substituting 5 for p in the original expression $p^2 - 5p$
p - 5 = 0	gives $5^2 - 5(5)$, which is $25 - 25$ or 0.
p = 5	

Explain the mistake that Jada made and show the correct solutions.

(From Unit 7, Lesson 9.)

6. Which expression in factored form is equivalent to $30x^2 + 31x + 5$?

A.
$$(6x + 5)(5x + 1)$$

B. $(5x + 5)(6x + 1)$
C. $(10x + 5)(3x + 1)$
D. $(30x + 5)(x + 1)$

$$D.(30x + 3)(x + 1)$$

(From Unit 7, Lesson 10.)

7. Two rocks are launched straight up in the air. The height of Rock A is given by the function f, where $f(t) = 4 + 30t - 16t^2$. The height of Rock B is given by g, where $g(t) = 5 + 20t - 16t^2$. In both functions, t is time measured in seconds after the rocks are launched and height is measured in feet above the ground.

a. Which rock is launched from a higher point?

b. Which rock is launched with a greater velocity?

(From Unit 6, Lesson 6.)

8. a. Describe how the graph of f(x) = |x| has to be shifted to match the given graph.

b. Find an equation for the function represented by the graph.

(From Unit 4, Lesson 14.)