Lesson 12: Arithmetic with Complex Numbers

- Let's work with complex numbers.

12.1: Math Talk: Telescoping Sums

Find the value of these expressions mentally.

$$
\begin{aligned}
& 2-2+20-20+200-200 \\
& 100-50+10-10+50-100 \\
& 3+2+1+0-1-2-3 \\
& 1+2+4+8+16+32-16-8-4-2-1
\end{aligned}
$$

12.2: Adding Complex Numbers

1. This diagram represents $(2+3 i)+(-8-8 i)$.

a. How do you see $2+3 i$ represented?
b. How do you see $-8-8 i$ represented?
c. What complex number does A represent?
d. Add "like terms" in the expression $(2+3 i)+(-8-8 i)$. What do you get?
2. Write these sums and differences in the form $a+b i$, where a and b are real numbers. a. $(-3+2 i)+(4-5 i)$ (Check your work by drawing a diagram.)
b. $(-37-45 i)+(11+81 i)$
c. $(-3+2 i)-(4-5 i)$
d. $(-37-45 i)-(11+81 i)$

12.3: Multiplication on the Complex Plane

1. Draw points to represent $2,2^{2}, 2^{3}$, and 2^{4} on the real number line.

2. a. Write $2 i,(2 i)^{2},(2 i)^{3}$, and $(2 i)^{4}$ in the form $a+b i$.
b. Plot $2 i,(2 i)^{2},(2 i)^{3}$, and $(2 i)^{4}$ on the complex plane.

Are you ready for more?

1. If a and b are positive numbers, is it true that $\sqrt{a b}=\sqrt{a} \sqrt{b}$? Explain how you know.
2. If a and b are negative numbers, is it true that $\sqrt{a b}=\sqrt{a} \sqrt{b}$? Explain how you know.

Lesson 12 Summary

When we add a real number with an imaginary number, we get a complex number. We usually write complex numbers as:

$$
a+b i
$$

where a and b are real numbers. We say that a is the real part and $b i$ is the imaginary part.
To add (or subtract) two complex numbers, we add (or subtract) the real parts and add (or subtract) the imaginary parts. For example:

$$
\begin{gathered}
(2+3 i)+(4+5 i)=(2+4)+(3 i+5 i)=6+8 i \\
(2+3 i)-(4+5 i)=(2-4)+(3 i-5 i)=-2-2 i
\end{gathered}
$$

In general:

$$
(a+b i)+(c+d i)=(a+c)+(b+d) i
$$

and:

$$
(a+b i)-(c+d i)=(a-c)+(b-d) i
$$

When we raise an imaginary number to a power, we can use the fact that $i^{2}=-1$ to write the result in the form $a+b i$. For example, $(4 i)^{3}=4 i \cdot 4 i \cdot 4 i$. We can group the i factors together to see how to rewrite this.

$$
\begin{aligned}
4 i \cdot 4 i \cdot 4 i & =(4 \cdot 4 \cdot 4) \cdot(i \cdot i \cdot i) \\
& =64 \cdot\left(i^{2} \cdot i\right) \\
& =64 \cdot-1 \cdot i \\
& =-64 i
\end{aligned}
$$

So in this example, a is 0 and b is -64 .

