Lesson 14 Practice Problems

1. Select all expressions that are perfect squares.
A. $9 x^{2}+24 x+16$
B. $2 x^{2}+20 x+100$
C. $(7-3 x)^{2}$
D. $(5 x+4)(5 x-4)$
E. $(1-2 x)(-2 x+1)$
F. $4 x^{2}+6 x+\frac{9}{4}$
2. Find the missing number that makes the expression a perfect square. Next, write the expression in factored form.
a. $49 x^{2}-$ \qquad $x+16$
b. $36 x^{2}+$ \qquad $x+4$
c. $4 x^{2}-$ \qquad $x+25$
d. $9 x^{2}+$ \qquad $x+9$
e. $121 x^{2}+$ \qquad $x+9$
3. Find the missing number that makes the expression a perfect square. Next, write the expression in factored form.
a. $9 x^{2}+42 x+$ \qquad
b. $49 x^{2}-28 x+$ \qquad
c. $25 x^{2}+110 x+$ \qquad
d. $64 x^{2}-144 x+$ \qquad
e. $4 x^{2}+24 x+$ \qquad
4. a. Find the value of c to make the expression a perfect square. Then, write an equivalent expression in factored form.

standard form $a x^{2}+b x+c$	factored form $(k x+m)^{2}$
$4 x^{2}+4 x$	
$25 x^{2}-30 x$	

b. Solve each equation by completing the square.

$$
4 x^{2}+4 x=3 \quad 25 x^{2}-30 x+8=0
$$

5. For each function f, decide if the equation $f(x)=0$ has 0,1 , or 2 solutions. Explain how you know.
A

B
C

D
E
F

(From Unit 7, Lesson 5.)
6. Solve each equation.

$$
p^{2}+10=7 p
$$

$$
x^{2}+11 x+27=3
$$

$$
(y+2)(y+6)=-3
$$

(From Unit 7, Lesson 9.)
7. Which function could represent the height in meters of an object thrown upwards from a height of 25 meters above the ground t seconds after being launched?
A. $f(t)=-5 t^{2}$
B. $f(t)=-5 t^{2}+25$
C. $f(t)=-5 t^{2}+25 t+50$
D. $f(t)=-5 t^{2}+50 t+25$
(From Unit 6, Lesson 6.)
8. A group of children are guessing the number of pebbles in a glass jar. The guesses and the guessing errors are plotted on a coordinate plane.

(From Unit 4, Lesson 13.)
a. Which guess is furthest away from the actual number?
b. How far is the furthest guess away from the actual number?

