

Lesson 11 Practice Problems

- 1. For which of these angles is the sine negative? Select all that apply.
 - A. $-\frac{\pi}{4}$
 - B. $-\frac{\pi}{3}$
 - C. $-\frac{2\pi}{3}$
 - D. $-\frac{4\pi}{3}$
 - E. $-\frac{11\pi}{6}$
- 2. The clock reads 3:00 p.m.

Which of the following are true? Select all that apply.

- A. In the next hour, the minute hand moves through an angle of 2π radians.
- B. In the next 5 minutes, the minute hand will move through an angle of $-\frac{\pi}{6}$ radians.
- C. After the minute hand moves through an angle of $-\pi$ radians, it is 3:30 p.m.
- D. When the hour hand moves through an angle of $-\frac{\pi}{6}$ radians, it is 4:00 p.m.
- E. The angle the minute hand moves through is 12 times the angle the hour hand moves through.

3. Plot each point on the unit circle.

a.
$$A = (\cos(-\frac{\pi}{4}), \sin(-\frac{\pi}{4}))$$

b.
$$B = (\cos(2\pi), \sin(2\pi))$$

c.
$$C = \left(\cos(\frac{16\pi}{3}), \sin(\frac{16\pi}{3})\right)$$

d.
$$D = (\cos(-\frac{16\pi}{3}), \sin(-\frac{16\pi}{3}))$$

- 4. Which of these statements are true about the function f given by $f(\theta) = \sin(\theta)$? Select **all** that apply.
 - A. The graph of f meets the θ -axis at $0, \pm \pi, \pm 2\pi, \pm 3\pi, \dots$
 - B. The value of f always stays the same when π radians is added to the input.
 - C. The value of f always stays the same when 2π radians is added to the input.
 - D. The value of f always stays the same when -2π radians is added to the input.
 - E. The graph of f has a maximum when $\theta = \frac{5\pi}{2}$ radians.
- 5. Here is a unit circle with a point P at (1,0).

For each positive angle of rotation of the unit circle around its center listed, indicate on the unit circle where P is taken, and give a negative angle of rotation which takes P to the same location.

a.
$$A$$
, $\frac{\pi}{4}$ radians

b.
$$B$$
, $\frac{\pi}{2}$ radians

c.
$$C$$
, π radians

d.
$$D$$
, $\frac{3\pi}{2}$ radians

6. In which quadrant are both the sine and the tangent negat	ive?

- A. first
- B. second
- C. third
- D. fourth

(From Unit 6, Lesson 6.)

7. *Technology required*. Each equation defines a function. Graph each of them to identify which are periodic. Select **all** that are.

A.
$$y = \sin(\theta)$$

B.
$$y = e^x$$

C.
$$y = x^2 - 2x + 5$$

D.
$$y = \cos(\theta)$$

E.
$$y = 3$$

(From Unit 6, Lesson 8.)

- 8. a. List three different counterclockwise angles of rotation around the center of the circle that take P to Q.
 - b. Which quadrant(s) are the angles $\frac{13\pi}{4}$ and $\frac{10\pi}{3}$ radians in? Is the sine of these angles positive or negative?

(From Unit 6, Lesson 10.)