


Lesson 5: Efficiently Solving Inequalities

Let's solve more complicated inequalities.

5.1: Lots of Negatives

Here is an inequality: $-x \ge -4$.

- 1. Predict what you think the solutions on the number line will look like.
- 2. Select **all** the values that are solutions to $-x \ge -4$:
 - a. 3
 - b. -3
 - c. 4
 - d. -4
 - e. 4.001
 - f. -4.001
- 3. Graph the solutions to the inequality on the number line:



5.2: Inequalities with Tables

1. Let's investigate the inequality x - 3 > -2.

х	-4	-3	-2	-1	0	1	2	3	4
<i>x</i> − 3	-7		-5				-1		1

- a. Complete the table.
- b. For which values of x is it true that x 3 = -2?
- c. For which values of x is it true that x 3 > -2?
- d. Graph the solutions to x 3 > -2 on the number line:

2. Here is an inequality: 2x < 6.

a. Predict which values of x will make the inequality 2x < 6 true.

b. Complete the table. Does it match your prediction?

X	-4	-3	-2	-1	0	1	2	3	4
2x									

c. Graph the solutions to 2x < 6 on the number line:

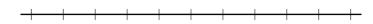
3. Here is an inequality: -2x < 6.

a. Predict which values of x will make the inequality -2x < 6 true.

b. Complete the table. Does it match your prediction?

X	-4	-3	-2	-1	0	1	2	3	4
-2 <i>x</i>									

c. Graph the solutions to -2x < 6 on the number line:



d. How are the solutions to 2x < 6 different from the solutions to -2x < 6?

5.3: Which Side are the Solutions?

- 1. Let's investigate $-4x + 5 \ge 25$.
 - a. Solve -4x + 5 = 25.
 - b. Is $-4x + 5 \ge 25$ true when x is 0? What about when x is 7? What about when x is -7?
 - c. Graph the solutions to $-4x + 5 \ge 25$ on the number line.

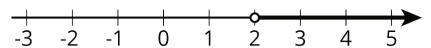
- 2. Let's investigate $\frac{4}{3}x + 3 < \frac{23}{3}$.
 - a. Solve $\frac{4}{3}x + 3 = \frac{23}{3}$.
 - b. $ls \frac{4}{3}x + 3 < \frac{23}{3}$ true when *x* is 0?
 - c. Graph the solutions to $\frac{4}{3}x + 3 < \frac{23}{3}$ on the number line.

- 3. Solve the inequality 3(x + 4) > 17.4 and graph the solutions on the number line.

4. Solve the inequality $-3\left(x-\frac{4}{3}\right) \le 6$ and graph the solutions on the number line.

Are you ready for more?

Write at least three different inequalities whose solution is x > -10. Find one with x on the left side that uses a <.


Lesson 5 Summary

Here is an inequality: 3(10 - 2x) < 18. The solution to this inequality is all the values you could use in place of x to make the inequality true.

In order to solve this, we can first solve the related equation 3(10 - 2x) = 18 to get the solution x = 2. That means 2 is the boundary between values of x that make the inequality true and values that make the inequality false.

To solve the inequality, we can check numbers greater than 2 and less than 2 and see which ones make the inequality true.

Let's check a number that is greater than 2: x=5. Replacing x with 5 in the inequality, we get $3(10-2\cdot 5)<18$ or just 0<18. This is true, so x=5 is a solution. This means that all values greater than 2 make the inequality true. We can write the solutions as x>2 and also represent the solutions on a number line:

Notice that 2 itself is not a solution because it's the value of x that makes 3(10-2x) equal to 18, and so it does not make 3(10-2x) < 18 true.

For confirmation that we found the correct solution, we can also test a value that is less than 2. If we test x=0, we get $3(10-2\cdot 0)<18$ or just 30<18. This is false, so x=0 and all values of x that are less than 2 are not solutions.