

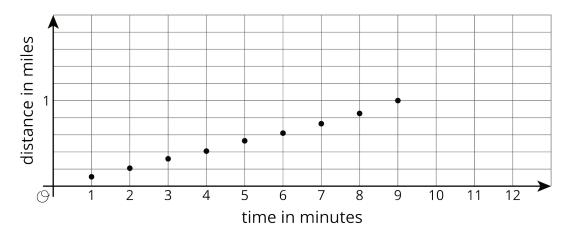
Lesson 7 Practice Problems

1. The equation and the tables represent two different functions. Use the equation b = 4a - 5 and the table to answer the questions. This table represents *c* as a function of *a*.

a	-3 -20	0	2	5	10	12
с	-20	7	3	21	19	45

- a. When *a* is -3, is *b* or *c* greater?
- b. When *c* is 21, what is the value of *a*? What is the value of *b* that goes with this value of *a*?

c. When a is 6, is b or c greater?


d. For what values of *a* do we know that *c* is greater than *b*?

2. Elena and Lin are training for a race. Elena runs her mile at a constant speed of 7.5 miles per hour.

time (minutes)	1	2	3	4	5	6	7	8	9
distance (miles)	0.11	0.21	0.32	0.41	0.53	0.62	0.73	0.85	1

Lin's total distances are recorded every minute:

- a. Who finished their mile first?
- b. This is a graph of Lin's progress. Draw a graph to represent Elena's mile on the same axes.

c. For these models, is distance a function of time? Is time a function of distance? Explain how you know. 3. Match each function rule with the value that could not be a possible input for that function.

A. 3 divided by the input	1.3
B. Add 4 to the input, then divide this value into 3	2.4
	34
C. Subtract 3 from the input, then divide this value into 1	4. 0
	5. 1

(From Unit 5, Lesson 2.)

4. Find a value of *x* that makes the equation true. Explain your reasoning, and check that your answer is correct.

$$-(-2x+1) = 9 - 14x$$

(From Unit 4, Lesson 4.)