Lesson 20: Quadratics and Irrationals

• Let's explore irrational numbers.

20.1: Where is $\sqrt{21}$?

Which number line accurately plots the value of $\sqrt{21}$? Explain your reasoning.

20.2: Some Rational Properties

Rational numbers are fractions and their opposites.

1. All of these numbers are rational numbers. Show that they are rational by writing them in the form $\frac{a}{b}$ or $-\frac{a}{b}$ for integers *a* and *b*.

a. 6.28

b. $-\sqrt{81}$ c. $\sqrt{\frac{4}{121}}$ d. -7.1234 e. $0.\overline{3}$ f. $\frac{1.1}{13}$

2. All rational numbers have decimal representations, too. Find the decimal representation of each of these rational numbers.

3. What do you notice about the decimal representations of rational numbers?

20.3: Approximating Irrational Values

Although $\sqrt{2}$ is irrational, we can approximate its value by considering values near it.

1. How can we know that $\sqrt{2}$ is between 1 and 2?

2. How can we know that $\sqrt{2}$ is between 1.4 and 1.5?

- 3. Approximate the next decimal place for $\sqrt{2}$.
- 4. Use a similar process to approximate the $\sqrt{5}$ to the thousandths place.