## Lesson 20: Quadratics and Irrationals

- Let's explore irrational numbers.


## 20.1: Where is $\sqrt{21}$ ?

Which number line accurately plots the value of $\sqrt{21}$ ? Explain your reasoning.

A


B


C


D


## 20.2: Some Rational Properties

Rational numbers are fractions and their opposites.

1. All of these numbers are rational numbers. Show that they are rational by writing them in the form $\frac{a}{b}$ or $-\frac{a}{b}$ for integers $a$ and $b$.
a. 6.28
b. $-\sqrt{81}$
c. $\sqrt{\frac{4}{121}}$
d. -7.1234
e. $0 . \overline{3}$
f. $\frac{1.1}{13}$
2. All rational numbers have decimal representations, too. Find the decimal representation of each of these rational numbers.
a. $\frac{47}{1,000}$
b. $-\frac{12}{5}$
c. $\frac{\sqrt{9}}{6}$
d. $\frac{53}{9}$
e. $\frac{1}{7}$
3. What do you notice about the decimal representations of rational numbers?

## 20.3: Approximating Irrational Values

Although $\sqrt{2}$ is irrational, we can approximate its value by considering values near it.

1. How can we know that $\sqrt{2}$ is between 1 and 2?
2. How can we know that $\sqrt{2}$ is between 1.4 and 1.5 ?
3. Approximate the next decimal place for $\sqrt{2}$.
4. Use a similar process to approximate the $\sqrt{5}$ to the thousandths place.
