Lesson 3 Practice Problems

1. Select all points where relative minimum values occur on this graph of a polynomial function.

A. Point A
B. Point B
C. Point C
D. Point D
E. Point E
F. Point F
G. Point G
H. Point H
2. Add one term to the polynomial expression $14 x^{19}-9 x^{15}+11 x^{4}+5 x^{2}+3$ to make it into a 22nd degree polynomial.
3. Identify the degree, leading coefficient, and constant value of each of the following polynomials:
a. $f(x)=x^{3}-8 x^{2}-x+8$
b. $h(x)=2 x^{4}+x^{3}-3 x^{2}-x+1$
c. $g(x)=13.2 x^{3}+3 x^{4}-x-4.4$
4. We want to make an open-top box by cutting out corners of a square piece of cardboard and folding up the sides. The cardboard is a 9 inch by 9 inch square. The volume $V(x)$ in cubic inches of the open-top box is a function of the side length x in inches of the square cutouts.
a. Write an expression for $V(x)$.
b. What is the volume of the box when $x=1$?
c. What is a reasonable domain for V in this context?
(From Unit 2, Lesson 1.)
5. Consider the polynomial function p given by $p(x)=7 x^{3}-2 x^{2}+3 x+10$. Evaluate the function at $x=-3$.
6. An open-top box is formed by cutting squares out of an 11 inch by 17 inch piece of paper and then folding up the sides. The volume $V(x)$ in cubic inches of this type of open-top box is a function of the side length x in inches of the square cutouts and can be given by $V(x)=(17-2 x)(11-2 x)(x)$. Rewrite this equation by expanding the polynomial.
(From Unit 2, Lesson 2.)
