Unit 4 Lesson 7: Subtraction in Equivalent Expressions

1 Number Talk: Additive Inverses (Warm up)
Student Task Statement
Find each sum or difference mentally.
$-30+-10$
$-10+-30$
$-30-10$
$10--30$

2 A Helpful Observation

Student Task Statement

Lin and Kiran are trying to calculate $7 \frac{3}{4}+3 \frac{5}{6}-1 \frac{3}{4}$. Here is their conversation:
Lin: "I plan to first add $7 \frac{3}{4}$ and $3 \frac{5}{6}$, so I will have to start by finding equivalent fractions with a common denominator."

Kiran: "It would be a lot easier if we could start by working with the $1 \frac{3}{4}$ and $7 \frac{3}{4}$. Can we rewrite it like $7 \frac{3}{4}+1 \frac{3}{4}-3 \frac{5}{6}$?"

Lin: "You can't switch the order of numbers in a subtraction problem like you can with addition; $2-3$ is not equal to $3-2$."

Kiran: "That's true, but do you remember what we learned about rewriting subtraction expressions using addition? $2-3$ is equal to $2+(-3)$."

1. Write an expression that is equivalent to $7 \frac{3}{4}+3 \frac{5}{6}-1 \frac{3}{4}$ that uses addition instead of subtraction.
2. If you wrote the terms of your new expression in a different order, would it still be equivalent? Explain your reasoning.

3 Organizing Work

Images for Launch

$$
\begin{array}{ll}
5 & 3
\end{array}
$$

Student Task Statement

1. Write two expressions for the area of the big rectangle.

2. Use the distributive property to write an expression that is equivalent to $\frac{1}{2}(8 y+-x+-12)$. The boxes can help you organize your work.

$$
8 y \quad-x \quad-12
$$

3. Use the distributive property to write an expression that is equivalent to $\frac{1}{2}(8 y-x-12)$.

Activity Synthesis

$$
\frac{1}{c}-x \quad 10-12
$$

