Lesson 9: What is a Logarithm?

• Let's learn about logarithms.

9.1: Math Talk: Finding Solutions

Find or estimate the value of each variable mentally.

 $4^{a} = 16$

 $4^{b} = 2$

 $4^{\frac{5}{2}} = c$

 $4^{d} = 56$

x	$\log_{10}(x)$	x	$\log_{10}(x)$	x	$\log_{10}(x)$	x	$\log_{10}(x)$
2	0.3010	20	1.3010	200	2.3010	2,000	3.3010
3	0.4771	30	1.4771	300	2.4771	3,000	3.4771
4	0.6021	40	1.6021	400	2.6021	4,000	3.6021
5	0.6990	50	1.6990	500	2.6990	5,000	3.6990
6	0.7782	60	1.7782	600	2.7782	6,000	3.7782
7	0.8451	70	1.8451	700	2.8451	7,000	3.8451
8	0.9031	80	1.9031	800	2.9031	8,000	3.9031
9	0.9542	90	1.9542	900	2.9542	9,000	3.9542
10	1	100	2	1,000	3	10,000	4

9.2: A Table of Numbers

1. Analyze the table and discuss with a partner what you think the table tells us.

2. Use the table to find the value of the unknown exponent that makes each equation true.

a. $10^w = 1,000$

- b. $10^y = 9$
- c. $10^z = 90$
- 3. Notice that some values in the columns labeled $\log_{10} x$ are whole numbers, but most are decimals. Why do you think that is?

9.3: Hello, Logarithm!

1. Here are two true equations based on the information from the table:

 $\log_{10} 100 = 2$ $\log_{10} 1,000 = 3$

What values could replace the "?" in these equations to make them true?

a. $\log_{10} 1,000,000 = ?$

b. $\log_{10} 1 = ?$

c. \log_{10} ? = 4

- 2. Between which two whole numbers is the value of $\log_{10} 600$? Be prepared to explain how do you know.
- 3. The term *log* is short for **logarithm**. Discuss the following questions with a partner and record your responses:
 - a. What do you think logarithm means or does?
 - b. Next to "log" is a subscript—a number or letter printed smaller and below the line of text. What do you think the subscript tells us?
 - c. What about the other two numbers on either side of the equal sign (for example, the 100 and the 2 in $\log_{10} 100 = 2$)? What do they tell us?

Are you ready for more?

- 1. For which whole number values of *n* is $log_{10}(n)$ an integer?
- 2. Why will $\log_{10}(n)$ never be equal to a non-integer rational number?

Lesson 9 Summary

We know how to solve equations such as $10^a = 10,000$ or $10^b = \frac{1}{100}$ by thinking about integer powers of 10. The solutions are a = 4 and b = -2. What about an equation such as $10^p = 250$?

Because $10^2 = 100$ and $10^3 = 1,000$, we know that *p* is between 2 and 3. We can use a **logarithm** to represent the exact solution to this equation and write it as:

$$p = \log_{10} 250$$

The expression is read "the log, base 10, of 250."

- The small, slightly lowered "10" refers to the base of 10.
- The 250 is the value of the power of 10.
- $\log_{10} 250$ is the value of the exponent *p* that makes 10^p equal 250.

Base 10 logarithms are often written without the number 10. So $\log_{10} 250$ can also be written as $\log 250$ and this expression is read "the log of 250."

One way to estimate logarithms is with a logarithm table. For example, using this base 10 logarithm table we can see that $\log_{10} 250$ is between 2.3 and 2.48.

x	$\log_{10}(x)$	x	$\log_{10}(x)$	x	$\log_{10}(x)$	x	$\log_{10}(x)$
2	0.3010	20	1.3010	200	2.3010	2,000	3.3010
3	0.4771	30	1.4771	300	2.4771	3,000	3.4771
4	0.6021	40	1.6021	400	2.6021	4,000	3.6021
5	0.6990	50	1.6990	500	2.6990	5,000	3.6990
6	0.7782	60	1.7782	600	2.7782	6,000	3.7782
7	0.8451	70	1.8451	700	2.8451	7,000	3.8451
8	0.9031	80	1.9031	800	2.9031	8,000	3.9031
9	0.9542	90	1.9542	900	2.9542	9,000	3.9542
10	1	100	2	1,000	3	10,000	4