Lesson 13 Practice Problems

1. Graph the equations $(x-2)^{2}+(y+3)^{2}=36$ and $x=2$. Where do they intersect?

2. Select all equations for which the point $(2,-3)$ is on the graph of the equation.
A. $y-3=x-2$
B. $4 x+y=5$
C. $y=5 x-13$
D. $x^{2}+y^{2}=13$
E. $(x-2)^{2}+(y-(-3))^{2}=25$
F. $y=(x-2)^{2}+3$
G. $y=x^{2}-7$
3. The image shows a graph of the parabola with focus $(3,4)$ and directrix $y=2$, and the line given by $y=4$. Find and verify the points where the parabola and the line intersect.

4. Here is a line ℓ. Write equations for and graph 4 different lines perpendicular to ℓ.

(From Unit 6, Lesson 12.)
5. Write an equation whose graph is a line perpendicular to the graph of $y=4$ and which passes through the point $(2,5)$.
(From Unit 6, Lesson 12.)
6 . Select all lines that are perpendicular to $y-4=-\frac{2}{3}(x+1)$.
A. $y=\frac{3}{2} x+8$
B. $3 x-2 y=2$
C. $3 x+2 y=10$
D. $y-2=-\frac{2}{3}(x-1)$
E. $y=\frac{3}{2} x$
(From Unit 6, Lesson 11.)
6. Select the line parallel to $3 x-2 y=10$.
A. $y-1=\frac{3}{2}(x+6)$
B. $6 x+4 y=-20$
C. $y=-\frac{3}{2} x+2$
D. $y-4=\frac{2}{3}(x+1)$
(From Unit 6, Lesson 10.)
7. Explain how you could tell whether $x^{2}+b x+c$ is a perfect square trinomial.
(From Unit 6, Lesson 5.)
