

Lesson 10: Interpreting and Writing Logarithmic Equations

• Let's look at logarithms with different bases.

10.1: Reading Logs

The expression $\log_{10} 1,000 = 3$ can be read as: "The log, base 10, of 1,000 is 3."

It can be interpreted as: "The exponent to which we raise a base 10 to get 1,000 is 3."

Take turns with a partner reading each equation out loud. Then, interpret what they mean.

- $\log_{10} 100,000,000 = 8$
- $\log_{10} 1 = 0$
- $\log_2 16 = 4$
- $\log_5 25 = 2$

x	$\log_2(x)$	x	$\log_2(x)$	x	$\log_2(x)$	x	$\log_2(x)$
1	0	11	3.4594	21	4.3923	31	4.9542
2	1	12	3.5845	22	4.4594	32	5
3	1.5850	13	3.7004	23	4.5236	33	5.0444
4	2	14	3.8074	24	4.5850	34	5.0875
5	2.3219	15	3.9069	25	4.6439	35	5.1293
6	2.5850	16	4	26	4.7004	36	5.1699
7	2.8074	17	4.0875	27	4.7549	37	5.2095
8	3	18	4.1699	28	4.8074	38	5.2479
9	3.1699	19	4.2479	29	4.8580	39	5.2854
10	3.3219	20	4.3219	30	4.9069	40	5.3219

10.2: Base 2 Logarithms

1. Use the table to find the exact or approximate value of each expression. Then, explain to a partner what each expression and its approximated value means. a. $\log_2 2$

b. log₂ 32

c. log₂ 15

d. log₂ 40

2. Solve each equation. Write the solution as a logarithmic expression.

a. $2^{y} = 5$ b. $2^{y} = 70$

c. $2^y = 999$

10.3: Exponential and Logarithmic Forms

These equations express the same relationship between 2, 16, and 4:

$$\log_2 16 = 4$$
 $2^4 = 16$

1. Each row shows two equations that express the same relationship. Complete the table.

	exponential form	logarithmic form
a.	$2^1 = 2$	
b.	$10^0 = 1$	
с.		$\log_3 81 = 4$
d.		$\log_5 1 = 0$
e.	$10^{-1} = \frac{1}{10}$	
f.	$9^{\frac{1}{2}} = 3$	
g.		$\log_2 \frac{1}{8} = -3$
h.	$2^{y} = 15$	
i.		$\log_5 40 = y$
j.	$b^{y} = x$	

- 2. Write two equations—one in exponential form and one in logarithmic form—to represent each question. Use "?" for the unknown value.
 - a. "To what exponent do we raise the number 4 to get 64?"
 - b. "What is the log, base 2, of 128?"

Are you ready for more?

- 1. Is $\log_2(10)$ greater than 3 or less than 3? Is $\log_{10}(2)$ greater than or less than 1? Explain your reasoning.
- 2. How are these two quantities related?

Lesson 10 Summary

Many relationships that can be expressed with an exponent can also be expressed with a logarithm. Let's look at this equation:

$$2^7 = 128$$

The base is 2 and the exponent is 7, so it can be expressed as a logarithm with base 2:

$$\log_2 128 = 7$$

In general, an exponential equation and a logarithmic equation are related as shown here:

Exponents can be negative, so a logarithm can have negative values. For example $3^{-4} = \frac{1}{81}$, which means that $\log_3 \frac{1}{81} = -4$.

An exponential equation cannot always be solved by observation. For example, $2^x = 19$ does not have an obvious solution. The logarithm gives us a way to represent the solution to this equation: $x = \log_2 19$. The expression $\log_2 19$ is approximately 4.25, but $\log_2 19$ is an exact solution.