

Lesson 11 Practice Problems

- 1. Write an equation for a line that passes through the origin and is perpendicular to y = 5x 2.
- 2. Match each line with a perpendicular line.

A.
$$y = 5x + 2$$

1. the line through (2, 12) and (17, 9)

B.
$$y - 2.25 = -2(x - 2)$$

2.
$$y = -\frac{1}{2}x + 5$$

C. the line through
$$(-1,5)$$
 and $(1,9)$

$$3.\ 2x - 4y = 10$$

3. The rule $(x, y) \rightarrow (y, -x)$ takes a line to a perpendicular line. Select **all** the rules that take a line to a perpendicular line.

$$A. (x, y) \rightarrow (2y, -x)$$

$$\mathsf{B.}\;(x,y)\to(-y,-x)$$

$$\mathsf{C.}\ (x,y)\to (\mathsf{-}y,x)$$

D.
$$(x, y) \to (0.5y, -2x)$$

E.
$$(x, y) \to (4y, -4x)$$

- 4. a. Write an equation of the line with x-intercept (3,0) and y-intercept (0,-4).
 - b. Write an equation of a line parallel to the line $y 5 = \frac{4}{3}(x 2)$.

(From Unit 6, Lesson 10.)

5. Lines ℓ and p are parallel. Select **all** true statements.

- A. Triangle ADB is similar to triangle CEF.
- B. Triangle ADB is congruent to triangle CEF.
- C. The slope of line ℓ is equal to the slope of line p.
- $D. \sin(A) = \sin(C)$
- $E. \sin(B) = \cos(C)$

(From Unit 6, Lesson 10.)

6. Select the equation that states (x, y) is the same distance from (0, 5) as it is from the line y = -3.

A.
$$x^2 + (y+5)^2 = (y+3)^2$$

B.
$$x^2 + (y-5)^2 = (y+3)^2$$

C.
$$x^2 + (y+5)^2 = (y-3)^2$$

D.
$$x^2 + (y-5)^2 = (y-3)^2$$

(From Unit 6, Lesson 8.)

7. Select **all** equations that represent the graph shown.

A.
$$y = -x + 2$$

B.
$$(y-3) = -(x+1)$$

C.
$$(y-3) = -x-1$$

D.
$$(y-3) = (x-1)$$

E.
$$(y + 1) = -(x - 3)$$

(From Unit 6, Lesson 9.)

8. Write a rule that describes this transformation.

original figure	image
(3,2)	(6, 4)
(4, -1)	(8, -2)
(5, 1)	(10, 2)
(7,3)	(14, 6)

(From Unit 6, Lesson 3.)