Lesson 11 Practice Problems

1. Write an equation for a line that passes through the origin and is perpendicular to $y=5 x-2$.
2. Match each line with a perpendicular line.
A. $y=5 x+2$
3. the line through $(2,12)$ and $(17,9)$
B. $y-2.25=-2(x-2)$
4. $y=-\frac{1}{2} x+5$
C. the line through $(-1,5)$ and $(1,9)$
5. $2 x-4 y=10$
6. The rule $(x, y) \rightarrow(y,-x)$ takes a line to a perpendicular line. Select all the rules that take a line to a perpendicular line.
A. $(x, y) \rightarrow(2 y,-x)$
B. $(x, y) \rightarrow(-y,-x)$
C. $(x, y) \rightarrow(-y, x)$
D. $(x, y) \rightarrow(0.5 y,-2 x)$
E. $(x, y) \rightarrow(4 y,-4 x)$
7. a. Write an equation of the line with x-intercept $(3,0)$ and y-intercept $(0,-4)$.
b. Write an equation of a line parallel to the line $y-5=\frac{4}{3}(x-2)$.
8. Lines ℓ and p are parallel. Select all true statements.

A. Triangle $A D B$ is similar to triangle $C E F$.
B. Triangle $A D B$ is congruent to triangle $C E F$.
C. The slope of line ℓ is equal to the slope of line p.
D. $\sin (A)=\sin (C)$
E. $\sin (B)=\cos (C)$
(From Unit 6, Lesson 10.)
9. Select the equation that states (x, y) is the same distance from $(0,5)$ as it is from the line $y=-3$.
A. $x^{2}+(y+5)^{2}=(y+3)^{2}$
B. $x^{2}+(y-5)^{2}=(y+3)^{2}$
C. $x^{2}+(y+5)^{2}=(y-3)^{2}$
D. $x^{2}+(y-5)^{2}=(y-3)^{2}$
(From Unit 6, Lesson 8.)
10. Select all equations that represent the graph shown.

A. $y=-x+2$
B. $(y-3)=-(x+1)$
C. $(y-3)=-x-1$
D. $(y-3)=(x-1)$
E. $(y+1)=-(x-3)$
(From Unit 6, Lesson 9.)
11. Write a rule that describes this transformation.

original figure	image
$(3,2)$	$(6,4)$
$(4,-1)$	$(8,-2)$
$(5,1)$	$(10,2)$
$(7,3)$	$(14,6)$

(From Unit 6, Lesson 3.)

