Lesson 10 Practice Problems

1. Select all equations that are parallel to the line $2 x+5 y=8$.
A. $y=\frac{2}{5} x+4$
B. $y=-\frac{2}{5} x+4$
C. $y-2=\frac{5}{2}(x+1)$
D. $y-2=-\frac{2}{5}(x+1)$
E. $10 x+5 y=40$
2. Prove that $A B C D$ is not a parallelogram.

3. Write an equation of a line that passes through $(-1,2)$ and is parallel to a line with x-intercept $(3,0)$ and y-intercept $(0,1)$.
4. Write an equation of the line with slope $\frac{2}{3}$ that goes through the point $(-2,5)$.
5. Priya and Han each wrote an equation of a line with slope $\frac{1}{3}$ that passes through the point $(1,2)$. Priya's equation is $y-2=\frac{1}{3}(x-1)$ and Han's equation is $3 y-x=5$.
Do you agree with either of them? Explain or show your reasoning.
(From Unit 6, Lesson 9.)
6. Match each equation with another equation whose graph is the same parabola.
A. $(x-3)^{2}+(y-2)^{2}=y^{2}$
7. $y=\frac{1}{8}(x-2)^{2}$
B. $(x-2)^{2}+(y-3)^{2}=(y+3)^{2}$
8. $y=\frac{1}{12}(x-2)^{2}$
C. $(x-3)^{2}+(y-4)^{2}=(y+2)^{2}$
9. $y=\frac{1}{4}(x-3)^{2}+1$
D. $(x-2)^{2}+(y-2)^{2}=(y+2)^{2}$
10. $y=\frac{1}{12}(x-3)^{2}+1$
(From Unit 6, Lesson 8.)
11. A parabola is defined as the set of points the same distance from $(-1,3)$ and the line $y=5$. Select the point that is on this parabola.
A. $(-1,3)$
B. $(0,5)$
C. $(3,0)$
D. $(0,0)$
(From Unit 6, Lesson 7.)
12. Here are some transformation rules. For each rule, describe whether the transformation is a rigid motion, a dilation, or neither.
a. $(x, y) \rightarrow(2 x, y+2)$
b. $(x, y) \rightarrow(2 x, 2 y)$
c. $(x, y) \rightarrow(x+2, y+2)$
d. $(x, y) \rightarrow(x-2, y)$
(From Unit 6, Lesson 2.)
