Lesson 16: Graphing from the Vertex Form

- Let's use vertex form to reason about a graph.

16.1: Math Talk: When x Is -7

Evaluate each expression when x is -7 :
$x+4$
$(x+4)^{2}$
$-(x+4)^{2}$
$-(x+4)^{2}+5$

16.2: Four Functions

1. Complete the table of values for each function.

$$
f(x)=(x-4)^{2}
$$

x	0	1	2	3	4	5	6	7
$f(x)$								

$$
g(x)=-(x-4)^{2}
$$

x	0	1	2	3	4	5	6	7
$g(x)$								

2. Use the completed tables to answer these questions:
a. What are the coordinates of the vertex of each graph? How can you tell?
b. Does the graph of function f open up or down? How can you tell?
c. Does the graph of function g open up or down? How can you tell?
3. Suppose function h is defined by $h(x)=(x-4)^{2}+5$ and function j is defined by $j(x)=-(x-4)^{2}+5$. Make predictions about the graph of each function using the questions here. If you get stuck, try creating a tables of values.
a. What are the coordinates of the vertex of the graph of h and j ?
b. Which way—up or down-does the graph of each function open? How do you know?

16.3: Four More Functions

Here are some tables of values that represent quadratic functions.

x	2	3	4	5	6	7	8
$t(x)$	-11	-2	1	-2	-11	-26	-47

x	-2	-1	0	1	2	3	4
$u(x)$	13	4	1	4	13	28	49

x	-1	0	1	2	3	4	5
$v(x)$	76	49	28	13	4	1	4
x	-4	-3	-2	-1	0	1	2
$w(x)$	-47	-26	-11	-2	1	-2	-11

1. Make a rough sketch of a graph of each function. Label the vertex of each graph with its coordinates.

2. Here are some expressions that define quadratic functions. Match each function t, u, v, and w with an expression that defines it.
a. $3 x^{2}+1$
b. $-3(x-4)^{2}+1$
c. $3(x-4)^{2}+1$
d. $-3 x^{2}+1$
