

Lesson 9 Practice Problems

1. Select **all** the equations that represent the graph shown.

A.
$$3x - 2y = 6$$

B. $y = \frac{3}{2}x + 3$
C. $y = \frac{3}{2}x - 3$
D. $y - 3 = \frac{3}{2}(x - 4)$
E. $y - 6 = \frac{3}{2}(x - 2)$

2. A line with slope $\frac{3}{2}$ passes through the point (1, 3).

- a. Explain why (3, 6) is on this line.
- b. Explain why (0, 0) is not on this line.
- c. Is the point (13, 22) on this line? Explain why or why not.
- 3. Write an equation of the line that passes through (1, 3) and has a slope of $\frac{5}{4}$.

- 4. A parabola has focus (3, -2) and directrix y = 2. The point (a, -8) is on the parabola. How far is this point from the focus?
 - A. 6 units
 - B. 8 units
 - C. 10 units
 - D. cannot be determined

(From Unit 6, Lesson 8.)

- 5. Write an equation for a parabola with each given focus and directrix.
 - a. focus: (5, 2); directrix: *x*-axis
 - b. focus: (-2, 3); directrix: the line y = 7
 - c. focus: (0, 7); directrix: *x*-axis
 - d. focus: (-3, -4); directrix: the line y = -1

(From Unit 6, Lesson 8.)

- 6. A parabola has focus (-1, 6) and directrix y = 4. Determine whether each point on the list is on this parabola. Explain your reasoning.
 - a. (-1, 5) b. (1, 7)
 - 5. (1,7)
 - c. (3,9)

(From Unit 6, Lesson 7.)

7. Select the center of the circle represented by the equation $x^2 + y^2 - 8x + 11y - 2 = 0$.

- A. (8, 11) B. (4, 5.5) C. (-4, -5.5)
- D. (4, -5.5)

(From Unit 6, Lesson 6.)

8. Reflect triangle ABC over the line x = -6.

Translate the image by the directed line segment from (0, 0)to (5, -1).

What are the coordinates of the vertices in the final image?

(From Unit 6, Lesson 1.)