Unit 2 Lesson 1: Let's Make a Box

1 Which One Doesn't Belong: Boxes (Warm up)

Student Task Statement

Which one doesn't belong?

C.

D.

 $V = 320 \text{ cm}^3$

2 Building Boxes

Images for Launch

Student Task Statement

Your teacher will give you some supplies.

- 1. Construct an open-top box from a sheet of paper by cutting out a square from each corner and then folding up the sides.
- 2. Calculate the volume of your box, and complete the table with your information.

side length of square cutout (in)	length (in)	width (in)	height (in)	volume of box (in ³)
1				

3 Building the Biggest Box

Student Task Statement

1. The volume V(x) in cubic inches of the open-top box is a function of the side length x in inches of the square cutouts. Make a plan to figure out how to construct the box with the largest volume.

Pause here so your teacher can review your plan.

- 2. Write an expression for V(x).
- 3. Use graphing technology to create a graph representing V(x). Approximate the value of x that would allow you to construct an open-top box with the largest volume possible from one piece of paper.