Lesson 12: Changing the Equation

- Let's look at quadratics with negative inputs.

12.1: Math Talk: A Negative Input

Evaluate each expression when x is -5 :
$-2 x$
x^{2}
$-2 x^{2}$
$-x^{2}$

12.2: Equations and Their Graphs

1. Two students are evaluating $x^{2}+7$ when x is -3 . Here is their work. Do you agree with either of them? Explain your reasoning.

Tyler:

$$
x^{2}+7
$$

Lin:
$x^{2}+7$

$$
-3^{2}+7
$$

$$
(-3)^{2}+7
$$

$(-3)^{2}+7$

$$
-9+7
$$

$$
9+7
$$

$9+7$

16
2. Evaluate each expression when x is -4:
a. x^{2}
b. $\frac{1}{2} x^{2}$
c. $-\frac{1}{8} x^{2}$
d. $-x^{2}-8$
3. Using graphing technology, graph $y=x$. Then, experiment with the following changes to the function. Record your observations (include sketches, if helpful).
a. Adding different constant terms to x (for example: $x+4, x-3$).
b. Multiplying x by different positive coefficients greater than 1 (for example: $6 x, 2.5 x)$.
c. Multiplying x by different positive coefficients between 0 and 1 (for example: $0.25 x, 0.1 x$).
d. Multiplying x by negative coefficients (for example: $-9 x,-4 x$).
4. Use your observations to sketch these functions on the coordinate plane, which currently shows $y=x$.
a. $y=-0.5 x+2.1$
b. $y=2.1 x-0.5$

12.3: Match the Graphs

1. Evaluate each expression when x is -3 .
a. x^{2}
b. $-x^{2}$
c. $x^{2}+20$
d. $-x^{2}+20$
2. For each graph, come up with an equation that the graph could represent. Verify your equation using graphing technology.
A

B

C

D

E

F

