Lesson 11: Zeros of Functions and Intercepts of Graphs

- Let's see what happens when a function's input or output is 0 .

11.1: Which Output is 0 ?

Which of these functions have an output of 0 when the input is -4 ?

- $v(x)=4 x$
- $w(x)=-4 x$
- $y(x)=8+2 x$
- $z(x)=2 x-8$

11.2: Intercept Detective

Here are the definitions of some functions, followed by some possible inputs for the functions.

$$
\begin{array}{ll}
a(x)=x-5 & g(x)=3 x+6 \\
b(x)=x+5 & h(x)=(x+5)(x+3) \\
c(x)=x-3 & m(x)=(x+1)(x-3) \\
d(x)=x+1 & n(x)=(3 x-6)(x-5) \\
f(x)=3 x-6 &
\end{array}
$$

Possible inputs: $-5,-4,-3,-2,-1,0,1,2,3,4$, and 5.

1. For each function, decide which input or inputs would give an output of 0 .
2. Here are graphs of b, f, and m. Label each intercept with its coordinates, and be prepared to explain how you know.

11.3: Making More Connections

1. For each function, identify the input that would give an output of 0 .
$\circ p(x)=x+10$

- $q(x)=x-10$
- $r(x)=8-x$
- $s(x)=-8-x$
- $t(x)=2 x-8$
- $u(x)=2 x+8$

2. Match each graph to a function in the previous question. Be prepared to explain your matches.
A

B

C

D

E

F

3. Label the intercepts on each graph with their coordinates.
4. For each function, identify the inputs that would give an output of 0 .

$$
\begin{aligned}
& \circ v(x)=(x+10)(2 x-8) \\
& \circ w(x)=(2 x+8)(10-x)
\end{aligned}
$$

5. Create three different functions whose output is 0 when the input is 7 . At least one of your functions must be quadratic.
