Lesson 10: Relating Linear Equations and their Graphs

- Let's connect functions to features of their graphs.

10.1: Notice and Wonder: Features of Graphs

Here are graphs of $y=2 x+5$ and $y=5 \cdot 2^{x}$.
What do you notice? What do you wonder?

10.2: Making Connections

1. Here are some equations and graphs. Match each graph to one or more equations that it could represent. Be prepared to explain how you know.
A

B

C

D

E

F

- $y=8$
- $-\frac{2}{3} x=y$
- $y=3 x-2$
- $12-4 x=y$
- $x+y=6$
- $x-y=12$
- $0.5 x=-4$
- $2 x+4 y=16$
- $y=x$
- $3 x=5 y$

2. Choose either graph D or F. Let x represent hours after noon on a given day and y represent the temperature in degrees Celsius in a freezer.
\circ In this situation, what does the y-intercept mean, if anything?

- In this situation, what does the x-intercept mean, if anything?

10.3: Connecting Equations and Graphs

A

B

C

D

E

F

1. Without substituting any values for x and y or using technology, decide whether graph A could represent each equation, and explain how you know.
a. $4 x=y$
b. $x-8=y$
c. $-5 x=10 y$
d. $3 y-12=0$
2. Write a new equation that could be represented by:
a. Graph D
b. Graph F
3. On this graph, x represents minutes since midnight and y represents temperature in degrees Fahrenheit.
a. Explain what the intercepts tell us about the situation.
b. Write an equation that relates the two quantities.

