Lesson 8 Practice Problems

1. Classify the graph of the equation $x^{2}+y^{2}-8 x+4 y=29$.
A. circle
B. exponential curve
C. line
D. parabola
2. Write an equation that states (x, y) is the same distance from $(4,1)$ as it is from the x-axis.
3. Select all equations which describe the parabola with focus $(-1,-7)$ and directrix $y=3$.
A. $(x-1)^{2}+(y-7)^{2}=(y+3)^{2}$
B. $(x+1)^{2}+(y+7)^{2}=(y-3)^{2}$
C. $y=-20(x+1)^{2}-2$
D. $y=-20(x+1)^{2}+2$
E. $y=-\frac{1}{20}(x+1)^{2}-2$
F. $y=-\frac{1}{20}(x+1)^{2}+2$
4. Parabola A and parabola B both have the x-axis as the directrix. Parabola A has its focus at $(3,2)$ and parabola B has its focus at $(5,4)$. Select all true statements.
A. Parabola A is wider than parabola B.
B. Parabola B is wider than parabola A.
C. The parabolas have the same line of symmetry.
D. The line of symmetry of parabola A is to the right of that of parabola B.
E. The line of symmetry of parabola B is to the right of that of parabola A.
(From Unit 6, Lesson 7.)
5. A parabola has focus $(5,1)$ and directrix $y=-3$. Where is the parabola's vertex?
(From Unit 6, Lesson 7.)
6. Select the value needed in the box in order for the expression to be a perfect square trinomial.

$$
x^{2}+7 x+\square
$$

A. 3.5
B. 7
C. 12.25
D. 14.5
(From Unit 6, Lesson 6.)
7. Rewrite each expression as the product of 2 factors.
a. $x^{2}+3 x$
b. $x^{2}-6 x-7$
c. $x^{2}+4 x+4$
(From Unit 6, Lesson 5.)
8. Suppose this two-dimensional figure is rotated 360 degrees using the vertical axis shown. Each small square on the grid represents 1 square inch. What is the volume of the three-dimensional figure?

(From Unit 5, Lesson 15.)

