

Lesson 8 Practice Problems

1. Classify the graph of the equation $x^2 + y^2 - 8x + 4y = 29$.

A. circle

- B. exponential curve
- C. line
- D. parabola
- 2. Write an equation that states (x, y) is the same distance from (4, 1) as it is from the *x*-axis.
- 3. Select **all** equations which describe the parabola with focus (-1, -7) and directrix y = 3.

A.
$$(x - 1)^2 + (y - 7)^2 = (y + 3)^2$$

B. $(x + 1)^2 + (y + 7)^2 = (y - 3)^2$
C. $y = -20(x + 1)^2 - 2$
D. $y = -20(x + 1)^2 + 2$
E. $y = -\frac{1}{20}(x + 1)^2 - 2$
F. $y = -\frac{1}{20}(x + 1)^2 + 2$

- 4. Parabola A and parabola B both have the *x*-axis as the directrix. Parabola A has its focus at (3, 2) and parabola B has its focus at (5, 4). Select **all** true statements.
 - A. Parabola A is wider than parabola B.
 - B. Parabola B is wider than parabola A.
 - C. The parabolas have the same line of symmetry.
 - D. The line of symmetry of parabola A is to the right of that of parabola B.
 - E. The line of symmetry of parabola B is to the right of that of parabola A.

(From Unit 6, Lesson 7.)

5. A parabola has focus (5, 1) and directrix y = -3. Where is the parabola's vertex?

(From Unit 6, Lesson 7.)

- 6. Select the value needed in the box in order for the expression to be a perfect square trinomial.
 - $x^{2} + 7x + \square$ A. 3.5 B. 7 C. 12.25 D. 14.5

(From Unit 6, Lesson 6.)

7. Rewrite each expression as the product of 2 factors.

a.
$$x^2 + 3x$$

b. $x^2 - 6x - 7$
c. $x^2 + 4x + 4$

(From Unit 6, Lesson 5.)

8. Suppose this two-dimensional figure is rotated 360 degrees using the vertical axis shown. Each small square on the grid represents 1 square inch. What is the volume of the three-dimensional figure?

⁽From Unit 5, Lesson 15.)