

Lesson 4 Practice Problems

- 1. Match each equation to its description.
 - A. circle centered at (0, -4) with a radius 1. (of 3
 - B. circle centered at (1, -4) with a radius of $\sqrt{3}$
 - C. circle centered at (1, 4) with a radius of $\sqrt{3}$

1.
$$(x - 1)^2 + y^2 = 9$$

2. $x^2 + (y + 4)^2 = 9$
3. $(x - 1)^2 + (y - 4)^2 = 3$
4. $(x - 1)^2 + (y + 4)^2 = 9$
5. $(x - 1)^2 + (y + 4)^2 = 3$

- D. circle centered at (1,0) with a radius of 3
- E. circle centered at (1, -4) with a radius of 3
- 2. Write an equation of a circle that is centered at (-3, 2) with a radius of 5.
 - A. $(x-3)^2 + (y+2)^2 = 5$ B. $(x+3)^2 + (y-2)^2 = 5$ C. $(x-3)^2 + (y+2)^2 = 25$
 - D. $(x+3)^2 + (y-2)^2 = 25$
- 3. a. Plot the circles $x^2 + y^2 = 4$ and $x^2 + y^2 = 1$ on the same coordinate plane.
 - b. Find the image of any point on $x^2 + y^2 = 4$ under the transformation $(x, y) \rightarrow (\frac{1}{2}x, \frac{1}{2}y)$.
 - c. What do you notice about $x^2 + y^2 = 4$ and $x^2 + y^2 = 1$?

4. $(x, y) \rightarrow (x - 3, 4 - y)$ is an example of a transformation called a glide reflection. Complete the table using the rule.

Does this glide reflection produce a triangle congruent to the original?

input	output
(1,1)	(-2,3)
(6,1)	
(3,5)	

(From Unit 6, Lesson 3.)

- 5. The triangle whose vertices are (1, 1), (5, 3), and (4, 5) is transformed by the rule $(x, y) \rightarrow (3x, 3y)$. Is the image similar or congruent to the original figure?
 - A. The image is congruent to the original triangle.
 - B. The image is similar but not congruent to the original triangle.
 - C. The image is neither similar nor congruent to the original triangle.

(From Unit 6, Lesson 3.)

6. Match each coordinate rule to a description of its resulting transformation.

- $\mathsf{A.}\ (x,y) \to (3x,3y)$
- B. $(x, y) \to (x 3, y 3)$
- C. (x, y) → (x + 3, y + 3)
- $\mathsf{D}.\,(x,y)\to(x-3,y)$
- $\mathsf{E}.\,(x,y)\to(x+3,y)$
- $\mathsf{F.}(x,y) \to (x,y-3)$
- $\mathsf{G.}(x,y) \to (x,y+3)$

- 1. Translate along the directed line segment from (0, 0) to (-3, 0).
- 2. Translate along the directed line segment from (0, 0) to (0, -3).
- 3. Translate along the directed line segment from (0,0) to (3,0).
- 4. Translate along the directed line segment from (0, 0) to (0, 3).
- 5. Translate along the directed line segment from (0, 0) to (3, 3).
- 6. Translate along the directed line segment from (0, 0) to (-3, -3).
- 7. Dilate using the origin as the center and a scale factor of 3.

(From Unit 6, Lesson 2.)

7. A cone-shaped container is oriented with its circular base on the top and its apex at the bottom. It has a radius of 18 inches and a height of 6 inches. The cone starts filling up with water. What fraction of the volume of the cone is filled when the water reaches a height of 2 inches?

(From Unit 5, Lesson 14.)