Unit 7 Lesson 20: Quadratics and Irrationals

1 Where is $\sqrt{21}$? (Warm up)

Student Task Statement

Which number line accurately plots the value of $\sqrt{21}$? Explain your reasoning.

2 Some Rational Properties

Student Task Statement

Rational numbers are fractions and their opposites.

- 1. All of these numbers are rational numbers. Show that they are rational by writing them in the form $\frac{a}{b}$ or $-\frac{a}{b}$ for integers *a* and *b*.
 - a. 6.28 b. $-\sqrt{81}$ c. $\sqrt{\frac{4}{121}}$ d. -7.1234e. $0.\overline{3}$ f. $\frac{1.1}{13}$
- 2. All rational numbers have decimal representations, too. Find the decimal representation of each of these rational numbers.
 - a. $\frac{47}{1,000}$ b. $-\frac{12}{5}$ c. $\frac{\sqrt{9}}{6}$ d. $\frac{53}{9}$ e. $\frac{1}{7}$

3. What do you notice about the decimal representations of rational numbers?

3 Approximating Irrational Values

Student Task Statement

Although $\sqrt{2}$ is irrational, we can approximate its value by considering values near it.

- 1. How can we know that $\sqrt{2}$ is between 1 and 2?
- 2. How can we know that $\sqrt{2}$ is between 1.4 and 1.5?
- 3. Approximate the next decimal place for $\sqrt{2}$.
- 4. Use a similar process to approximate the $\sqrt{5}$ to the thousandths place.

