Lesson 2 Practice Problems

1. Match each coordinate rule to a description of its resulting transformation.
A. $(x, y) \rightarrow(x+3, y)$
B. $(x, y) \rightarrow(2 x, 2 y)$
C. $(x, y) \rightarrow(x, y+4)$
D. $(x, y) \rightarrow(x, y-4)$
E. $(x, y) \rightarrow(x-3, y+4)$
2. Translate by the directed line segment from $(0,0)$ to $(0,4)$.
3. Translate by the directed line segment from $(0,0)$ to $(3,0)$.
4. Dilate using the origin as the center and a scale factor of 2 .
5. Translate by the directed line segment from $(0,0)$ to $(0,-4)$.
6. Translate by the directed line segment from $(0,0)$ to $(-3,4)$.
7. a. Draw the image of triangle $A B C$ under the transformation $(x, y) \rightarrow(x-4, y+1)$. Label the result T.
b. Draw the image of triangle $A B C$ under the transformation $(x, y) \rightarrow(-x, y)$. Label the result R.

8. Here are some transformation rules. For each rule, describe whether the transformation is a rigid motion, a dilation, or neither.
a. $(x, y) \rightarrow(x-2, y-3)$
b. $(x, y) \rightarrow(2 x, 3 y)$
c. $(x, y) \rightarrow(3 x, 3 y)$
d. $(x, y) \rightarrow(2-x, y)$
9. Reflect triangle $A B C$ over the line $x=0$. Call this new triangle $A^{\prime} B^{\prime} C^{\prime}$. Then reflect triangle $A^{\prime} B^{\prime} C^{\prime}$ over the line $y=0$. Call the resulting triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

Which single transformation takes $A B C$ to $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$?

A. Translate triangle $A B C$ by the directed line segment from $(1,1)$ to $(-2,1)$.
B. Reflect triangle $A B C$ across the line $y=-x$.
C. Rotate triangle $A B C$ counterclockwise using the origin as the center by 180 degrees.
D. Dilate triangle $A B C$ using the origin as the center and a scale factor of 2.
(From Unit 6, Lesson 1.)
5. Reflect triangle $A B C$ over the line $y=2$.

Translate the image by the directed line segment from $(0,0)$ to $(3,2)$.

What are the coordinates of the vertices in the final image?

							y*											
							10											
							8											
							6											
				A														
							2											
						C												
-10	-8				-4	-2	$2 \mathcal{O}$		2			4	6	6		8		$\overrightarrow{10 x}$
		B																
							-4											
							- 6											
							0											

(From Unit 6, Lesson 1.)
6. The density of water is 1 gram per cm^{3}. An object floats in water if its density is less than water's density, and it sinks if its density is greater than water's. Will a cylindrical log with radius 0.4 meters, height 5 meters, and mass 1,950 kilograms sink or float? Explain your reasoning.
7. These 3 congruent square pyramids can be assembled into a cube with side length 3 feet. What is the volume of each pyramid?

A. 1 cubic foot
B. 3 cubic feet
C. 9 cubic feet
D. 27 cubic feet
(From Unit 5, Lesson 12.)
8. Reflect square $A B C D$ across line $C D$. What is the ratio of the length of segment $A A^{\prime}$ to the length of segment $A D$? Explain or show your reasoning.

(From Unit 2, Lesson 1.)

