Lesson 3: Lots of Rectangles

- Let's express the areas of some rectangles.

3.1: Math Talk: Many Ways to Area

A rectangle is partitioned into smaller rectangles. Explain why each of these expressions represents the area of the entire rectangle.

$$
\begin{aligned}
& 7(7+7+4+4) \\
& 7(2 \cdot 7+2 \cdot 4) \\
& 7^{2}+7^{2}+4 \cdot 7+4 \cdot 7 \\
& 2\left(7^{2}\right)+2(4 \cdot 7)
\end{aligned}
$$

3.2: Representing Areas

A

D

B

C

F

Match each figure with one or more expressions for its area. Every shape that looks like a square is a square.

- $2 \cdot 3^{2}$
- $(n+1)(n+1)$
- n^{2}
- $6 n^{2}$
- $(2 n)(3 n)$
- $(n+n)(n+n+n)$
- $n^{2}+1^{2}$
- $(n+1)^{2}$
- $3^{2}+3^{2}$
- 3^{2}
- $3(3+3)$

3.3: Areas of Rectangles

Complete the table with the length, width, and area of each rectangle.

B

C $\quad \frac{1}{2} \frac{1}{2} \frac{1}{2}$

E

rectangle	length (units)	width (units)	area (square units)

A	$a+4$		
B		2	
C			
D			
E			

