

Lesson 9: Drawing Triangles (Part 1)

Let's see how many different triangles we can draw with certain measurements.

9.1: Which One Doesn't Belong: Triangles

Which one doesn't belong?

9.2: Does Your Triangle Match Theirs?

Three students have each drawn a triangle. For each description:

- Draw a triangle with the given measurements.
- Measure and label the other side lengths and angle measures in your triangle.
- Decide whether the triangle you drew must be an identical copy of the triangle that the student drew. Explain your reasoning.

1	lada's	triangle	has o	ne angle	measuring	75°
٠.	Jaua 3	ulaligic	1103 0	iic aligic	HICUSUITIE	10

2. Andre's triangle has one angle measuring 75° and one angle measuring 45° .

3. Lin's triangle has one angle measuring 75° , one angle measuring 45° , and one side measuring 5 cm.

9.3: How Many Can You Draw?

- 1. Draw as many different triangles as you can with each of these sets of measurements:
 - a. Two angles measure 60° , and one side measures 4 cm.

b. Two angles measure 90° , and one side measures 4 cm.

c. One angle measures 60° , one angle measures 90° , and one side measures 4 cm.

2. Which of these sets of measurements determine one unique triangle? Explain or show your reasoning.

Are you ready for more?

In the diagram, 9 toothpicks are used to make three equilateral triangles. Figure out a way to move only 3 of the toothpicks so that the diagram has exactly 5 equilateral triangles.

Lesson 9 Summary

Sometimes, we are given two different angle measures and a side length, and it is impossible to draw a triangle. For example, there is no triangle with side length 2 and angle measures 120° and 100°:

Sometimes, we are given two different angle measures and a side length between them, and we can draw a unique triangle. For example, if we draw a triangle with a side length of 4 between angles 90° and 60° , there is only one way they can meet up and complete to a triangle:

Any triangle drawn with these three conditions will be identical to the one above, with the same side lengths and same angle measures.