
Lesson 12: Volume of Right Prisms

Let's look at volumes of prisms.

12.1: Three Prisms with the Same Volume

Rectangles A, B, and C represent bases of three prisms.

- 1. If each prism has the same height, which one will have the greatest **volume**, and which will have the least? Explain your reasoning.
- 2. If each prism has the same volume, which one will have the tallest height, and which will have the shortest? Explain your reasoning.

12.2: Finding Volume with Cubes

Your teacher will give you a paper with a shape on it and some snap cubes.

- 1. Using the face of a snap cube as your area unit, what is the area of the shape? Explain or show your reasoning.
- 2. Use snap cubes to build the shape from the paper. Add another layer of cubes on top of the shape you have built. Describe this three-dimensional object.

3. What is the volume of your object? Explain your reasoning.

4. Right now, your object has a height of 2. What would the volume be:

a. if it had a height of 5?

b. if it had a height of 8.5?

12.3: Can You Find the Volume?

Your teacher will give you a set of three-dimensional figures.

- 1. For each figure, determine whether the shape is a prism.
- 2. For each prism:
 - a. Find the area of the base of the prism.
 - b. Find the height of the prism.
 - c. Calculate the volume of the prism.

	ls it a prism?	area of prism base (cm ²)	height (cm)	volume (cm ³)
figure A				
figure B				
figure C				
figure D				
figure E				
figure F				

Are you ready for more?

Imagine a large, solid cube made out of 64 white snap cubes. Someone spray paints all 6 faces of the large cube blue. After the paint dries, they disassemble the large cube into a pile of 64 snap cubes.

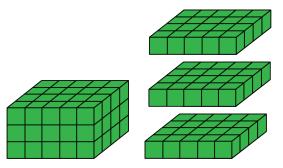
- 1. How many of those 64 snap cubes have exactly 2 faces that are blue?
- 2. What are the other possible numbers of blue faces the cubes can have? How many of each are there?
- 3. Try this problem again with some larger-sized cubes that use more than 64 snap cubes to build. What patterns do you notice?

12.4: What's the Prism's Height?

There are 4 different prisms that all have the same volume. Here is what the base of each prism looks like.

А				В				С					D		
									\setminus						
					/										

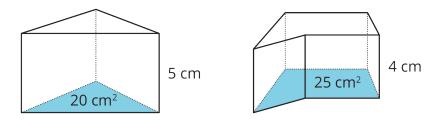
1. Order the prisms from shortest to tallest. Explain your reasoning.


2. If the volume of each prism is 60 units³, what would be the height of each prism?

- 3. For a volume other than 60 units³, what could be the height of each prism?
- 4. Discuss your thinking with your partner. If you disagree, work to reach an agreement.

Lesson 12 Summary

Any cross section of a prism that is parallel to the base will be identical to the base. This means we can slice prisms up to help find their volume. For example, if we have a rectangular prism that is 3 units tall and has a base that is 4 units by 5 units, we can think of this as 3 layers, where each layer has $4 \cdot 5$ cubic units.



That means the volume of the original rectangular prism is $3(4 \cdot 5)$ cubic units.

This works with any prism! If we have a prism with height 3 cm that has a base of area 20 cm², then the volume is $3 \cdot 20$ cm³ regardless of the shape of the base. In general, the volume of a prism with height *h* and area *B* is

$$V = B \cdot h$$

For example, these two prisms both have a volume of 100 cm³.

