

## **Lesson 9 Practice Problems**

1. A party will have hexagonal tables placed together with space for one person on each open side:



a. Complete this table showing the number of people P(n) who can sit at n tables.

| n    | 1 | 2 | 3 | 4 | 5 |
|------|---|---|---|---|---|
| P(n) | 6 |   |   |   |   |

- b. Describe how the number of people who can sit at the tables changes with each step.
- c. Explain why P(3.2) does not make sense in this scenario.
- d. Define  $\emph{P}$  recursively and for the  $\emph{n}^{\text{th}}$  term.
- 2. Diego is making a stack of pennies. He starts with 5 and then adds them 1 at at time. A penny is 1.52 mm thick.
  - a. Complete the table with the height of the stack h(n), in mm, after n pennies have been added.
  - b. Does h(1.52) make sense? Explain how you know.

| n | h(n) |
|---|------|
| 0 | 7.6  |
| 1 |      |
| 2 |      |
| 3 |      |



- 3. A piece of paper has an area of 80 square inches. A person cuts off  $\frac{1}{4}$  of the piece of paper. Then a second person cuts off  $\frac{1}{4}$  of the remaining paper. A third person cuts off  $\frac{1}{4}$  what is left, and so on.
  - a. Complete the table where A(n) is the area, in square inches, of the remaining paper after the  $n^{th}$  person cuts off their fracti

| their fraction.                                               | n | A(n) |
|---------------------------------------------------------------|---|------|
| b. Define $A$ for the $n^{\text{th}}$ term.                   | 0 | 80   |
| c. What is a reasonable domain for the function $A$ ? Explain | 1 |      |
| how you know.                                                 | 2 |      |
|                                                               | 2 |      |

- 4. Here is the recursive definition of a sequence: f(1) = 35, f(n) = f(n-1) 8 for  $n \ge 2$ .
  - a. List the first 5 terms of the sequence.
  - b. Graph the value of each term as a function of the term number.



(From Unit 1, Lesson 7.)

5. Here is a graph of sequence q. Define q recursively using function notation.



(From Unit 1, Lesson 6.)



- 6. Here is a recursive definition for a sequence f: f(0) = 19, f(n) = f(n-1) 6 for  $n \ge 1$ . The definition for the n<sup>th</sup> term is  $f(n) = 19 6 \cdot n$  for  $n \ge 0$ .
  - a. Explain how you know that these definitions represent the same sequence.
  - b. Select a definition to calculate f(20), and explain why you chose it.

(From Unit 1, Lesson 8.)

7. An arithmetic sequence j starts 20, 16, . . . Explain how you would calculate the value of the 500th term.

(From Unit 1, Lesson 8.)