Unit 6 Lesson 9: Standard Form and Factored Form

1 Math Talk: Opposites Attract (Warm up)

Student Task Statement

Solve each equation mentally.

$$40 - 8 = 40 + n$$

25 + -100 = 25 - n

$$3 - \frac{1}{2} = 3 + n$$

72 - n = 72 + 6

2 Finding Products of Differences

Student Task Statement

- 1. Show that (x 1)(x 1) and $x^2 2x + 1$ are equivalent expressions by drawing a diagram or applying the distributive property. Show your reasoning.
- 2. For each expression, write an equivalent expression. Show your reasoning. a. (x + 1)(x - 1)

b. (x - 2)(x + 3)

c. $(x - 2)^2$

Activity Synthesis

3 What is the Standard Form? What is the Factored Form?

Student Task Statement

The quadratic expression $x^2 + 4x + 3$ is written in **standard form**.

Here are some other quadratic expressions. The expressions on the left are written in standard form and the expressions on the right are not.

Written in standard form: Not written in standard form:

$x^2 - 1$	(2x + 3)x
$x^2 + 9x$	(x+1)(x-1)
$\frac{1}{2}x^2$	$3(x-2)^2 + 1$
$4x^2 - 2x + 5$	$-4(x^2 + x) + 7$
$-3x^2 - x + 6$	(x+8)(-x+5)
$1 - x^2$	

- 1. What are some characteristics of expressions in standard form?
- 2. (x + 1)(x 1) and (2x + 3)x in the right column are quadratic expressions written in **factored form**. Why do you think that form is called factored form?