Lesson 7

Compongamos una unidad más grande

Warm-up: Cuántos ves: ¿Se parecen? (10 minutes)

Narrative

The purpose of this How Many Do You See is for students to use grouping strategies to describe the images they see. It gives the teacher an opportunity to hear how students use place value terminology to talk about how many they see and the value represented by a base-ten diagram.

Students may describe how many of each unit they see or may describe the total value of the blocks. In the synthesis, students compare different ways each image represents the same number and describe the ways they could see when larger units could be composed. This understanding will be helpful in the lesson activities when students compose tens and hundreds and anticipate when they may need to compose units.

Launch

  • Groups of 2
  • “¿Cuántos ven? ¿Cómo lo saben?, ¿qué ven?” // “How many do you see? How do you see them?”
  • Flash the image.
  • 30 seconds: quiet think time

Activity

  • Display the image.
  • “Discutan con su pareja lo que pensaron” // “Discuss your thinking with your partner.”
  • 1 minute: partner discussion
  • Record responses.
  • Repeat for each image.

Student Facing

¿Cuántos ves? ¿Cómo lo sabes?, ¿qué ves?

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿En qué se parecen estas imágenes? ¿En qué son diferentes?” // “How are these images the same? How are they different?” (They each represent the same number. They have different amounts of hundreds, tens, and ones.)
  • “¿Cómo podrían saber cuándo pueden componer una decena o una centena?” // “How could you tell when you could compose a ten or a hundred?” (When there were ten of a unit. I saw two rows of 5 tens, so I knew I had enough to count it as 1 hundred.)

Activity 1: Compongamos una decena o una centena (15 minutes)

Narrative

The purpose of this activity is for students to find sums that require composing a ten or hundred when adding by place. The numbers in the expressions share the same digits, but one expression requires composing a ten and the other requires composing a hundred when adding by place. Students may use the methods that make sense to them when finding the value of each sum. Monitor for students who use base-ten blocks, base-ten diagrams, or equations to show adding by place and composing new units. The synthesis focuses on representations that show composing a ten and a new hundred.

Representation: Develop Language and Symbols. Make connections between representations visible. Show a side by side representation of using the base-ten blocks and how to notate the mathematics. One partner can write the notation and the other partner can manipulate the base-ten blocks to show the concrete visual.
Supports accessibility for: Conceptual Processing, Language, Social-Emotional Functioning

Required Materials

Materials to Gather

Launch

  • Groups of 2
  • Give students access to base-ten blocks.

Activity

  • “Encuentren el valor de cada expresión. Usen los bloques en base diez o muestren cómo pensaron usando un diagrama, símbolos u otras representaciones” // “Find the value of each expression. Use the base-ten blocks or show your thinking using a diagram, symbols, or other representations.”
  • “Cuando ustedes y su pareja hayan terminado, comparen cómo pensaron” // “When you and your partner are finished, compare your thinking.”
  • 5 minutes: independent work time
  • 5 minutes: partner discussion
  • Monitor for students who use base-ten blocks or diagrams to show adding by place and composing hundreds or tens.

Student Facing

  1. Encuentra el valor de cada expresión. Muestra cómo pensaste. Si te ayuda, usa bloques en base diez.

    1. \(364 + 28\)
    2. \(364 + 82\)
  2. Compara con tu compañero cómo pensaste.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Advancing Student Thinking

If students represent the value of a sum with more than 10 of a unit, consider asking:
  • “¿Me explicarías tu representación?” // “Will you explain your representation to me?”
  • “¿Cuál es el valor de la suma? ¿Cómo podrías escribirlo como un número de tres dígitos?” // “What is the value of the sum? How could you write it as a three-digit number?”
  • “¿Puedes usar bloques en base diez para mostrarme el total usando la menor cantidad de bloques posible?” // “Can you use base-ten blocks to show me the total using as few blocks as possible?”

Activity Synthesis

  • “¿En qué fue parecido encontrar el valor de las expresiones? ¿En qué fue diferente?” // “How was finding the value of the expressions the same? How was it different?” (In both of them you have to make a unit. In the first one you made a ten with 10 ones and in the second one you made a hundred with 10 tens.)
  • Invite previously identified students to share their methods.
  • “¿Cómo representó _____ que compuso una decena para encontrar el valor de \(364 + 28\)?” // “How did _____ represent composing a ten to find the value of \(364 + 28\)?”
  • “¿Cómo representó _____ que compuso una centena para encontrar el valor de \(364 + 82\)?” // “How did _____ represent composing a hundred to find the value of \(364 + 82\)?”
  • Consider asking, “¿Cuándo se dieron cuenta de que debían componer una unidad en base diez?” // “When did you notice that you would need to compose a unit?” (I could tell because I knew that there would be more than 10 ones once I started adding. I knew when I got the blocks that there were more than 10 tens.)

Activity 2: Caminemos por ahí y sumemos (20 minutes)

Narrative

The purpose of this activity is for students to practice adding a two-digit number and a three-digit number in sums that require composing a ten or hundred when adding by place. Students are given a card with a three-digit number or a two-digit number. Students with three-digit numbers find a partner with a two-digit number. When students first discuss whether they would need to compose a ten or a hundred when adding their numbers, they look for and make use of place value structure and construct viable arguments (MP3, MP7).

This activity uses MLR8 Discussion Supports. Advances: conversing

Required Materials

Materials to Gather

Materials to Copy

  • Walk About and Add Cards

Required Preparation

  • Create a set of cards from the blackline master so that each student will receive 1 card.

Launch

  • Groups of 2
  • Give students access to base-ten blocks.
  • Give half of the students three-digit cards (A) and the other half two-digit cards (B).

Activity

  • “Si tienen una tarjeta con la letra A en ella, encuentren a alguien con una tarjeta que tenga una B. Escriban una expresión que muestre la suma de los números de sus tarjetas” // “If you have a card with the letter A on it, find someone with a B. Write an expression to show the sum of the numbers on your cards.”
  • “Después, antes de encontrar el valor de la suma, decidan si piensan que deben componer una decena o una centena si suman unidades con unidades y decenas con decenas. Expliquen cómo pensaron. Para ayudarse a explicar, pueden usar bloques en base diez o diagramas” // “Then, before you find the value of the sum, decide whether you think you would compose a ten or a hundred if you added ones to ones and tens to tens. Explain your thinking. You can use base-ten blocks or diagrams to help explain.”
MLR8 Discussion Supports
  • Display sentence frames to support students when they explain their strategy and listen to others:
    • “Observé ____, entonces pienso que...” // “I noticed _____ so I think that …”
    • “Te escuché decir...” // “I heard you say …”
    • “Estoy de acuerdo porque...” // “I agree because …”
    • “Estoy en desacuerdo porque...” // “I disagree because …”
  • “Después de que discutan, encuentren juntos la suma. Luego intercambien sus tarjetas y busquen otra pareja” // “After you discuss, work together to find the sum. Then trade cards and find another partner.”
  • As needed, demonstrate one round with a student.
  • 15 minutes: partner work time
  • Monitor for students who:
    • use base-ten blocks or diagrams to show that a new unit will be composed
    • use what they know about adding by place and sums of 10 to explain why they knew a new unit would be composed (I know \(8 + 3\) is more than 10, so I know a hundred will be composed when we add 8 tens and 3 tens)
    • add 10 or 100 more using a mental strategy

Student Facing

Instrucciones:

  • Encuentra un compañero y anota los números que ustedes tienen para formar una expresión.
  • Discutan si piensan que tienen que componer una decena o una centena cuando suman sus números.
  • Encuentra el valor de la suma. Muestra cómo pensaste.
    1. ______________ + ______________
    2. ¿Vas a tener que componer una decena?

      Sí o No

    3. ¿Vas a tener que componer una centena?

      Sí o No

    4. Encuentra el valor de la suma. Muestra cómo pensaste.

    1. ______________+ _______________
    2. ¿Vas a tener que componer una decena?

      Sí o No

    3. ¿Vas a tener que componer una centena?

      Sí o No

    4. Encuentra el valor de la suma. Muestra cómo pensaste.
    1. _______________ + ______________
    2. ¿Vas a tener que componer una decena?

      Sí o No

    3. ¿Vas a tener que componer una centena?

      Sí o No

    4. Encuentra el valor de la suma. Muestra cómo pensaste.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Advancing Student Thinking

If students recognize that they would need to compose a ten or a hundred when adding by place, but do not explain clearly why they know, consider asking:
  • “¿Qué observaste acerca de las centenas, las decenas y las unidades?” // “What do you notice about the hundreds, tens, and ones?”
  • “¿Cómo podrías representar tus números con bloques en base diez y mostrar en dónde compondrías una unidad?” // “How could you represent your numbers with base-ten blocks and show where you would compose a unit?”

Activity Synthesis

  • Invite 2–3 previously identified groups to share how they decided if a ten or hundred would be composed.
  • Invite 1–2 previously identified groups to share an expression that resulted in a hundred being composed. Have them share their method for finding the sum. 

Lesson Synthesis

Lesson Synthesis

“Hoy aprendimos que cuando se suman números por posición, algunas veces hay que componer una unidad más grande. Ustedes encontraron el valor de sumas y compusieron una decena o una centena” // “Today we learned that when you add numbers by place, sometimes you need to compose a larger unit. You found the value of sums and composed a ten or hundred.“

Display \(428 + 42\).

“Clare se pregunta si va a formar una decena o una centena cuando encuentre el valor de \(428 + 42\). ¿Cómo pueden saberlo sin un diagrama?” // “Clare is wondering if she will make a ten or hundred when finding the value of \(428 + 42\). How can you tell without a diagram?” (I know there are 8 ones in 428 and 2 ones in 42. \(8 + 2 = 10\), so I know when I add the ones it will make a ten.) 

Cool-down: ¿Formar una decena? ¿Formar una centena? (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.