Lesson 9

Comparemos números en la recta numérica

Warm-up: Exploración de estimación: Centenas (10 minutes)

Narrative

The purpose of this Estimation Exploration is for students to practice the skill of making a reasonable estimate for a point on a number line based on the location of other numbers represented. Students give a range of reasonable answers when given incomplete information. They have the opportunity to revise their thinking as additional information is provided. Revealing the actual answer is not necessary because leaving it open ended provides an opportunity to focus on reasonableness and not just one right answer.

Launch

  • Group of 2
  • Display the image.
  • “¿Qué número podría estar representado por el punto en la recta numérica?” // “What number could be represented by the point on the number line?”
  • “¿Qué estimación sería muy alta?, ¿muy baja?, ¿razonable?” // “What is an estimate that’s too high? Too low? About right?”
  • 1 minute: quiet think time

Activity

  • “Discutan con su compañero cómo pensaron” // “Discuss your thinking with your partner.”
  • 1 minute: partner discussion
  • Record responses.
  • “Al adivinar, dijimos muchos números diferentes porque no tenemos mucha información” // “We had a lot of different guesses, because we don’t have a lot of information.”
  • Add 3 tick marks to the number line, so that it looks like this: 
Number line. Scale 300 to 400. by 25's  5 evenly spaced tick marks. First tick mark, 300.  Last tick mark, 400. Point plotted between 375 and 400.
  • “Teniendo en cuenta esta nueva información, ¿quieren ajustar o cambiar sus estimaciones?” // “Based on this new information, do you want to revise or change your estimates?”
  • 1 minute: quiet think time
  • 1 minute: partner discussion
  • Record responses.
  • “¿Cómo cambió su estimación?” // “How did your estimation change?”
  • 30 seconds: quiet think time
  • Share responses.

Student Facing

¿Qué número podría ser este?

Number line. Scale 300 to 400. Point plotted between 300 and 400.

  1. Escribe una estimación que sea:
    muy baja razonable muy alta
    \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\) \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\) \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\)
  2. Escribe una estimación que sea:
    muy baja razonable muy alta
    \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\) \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\) \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\)

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Cómo les ayudaron las marcas a ajustar su estimación?” // “How did the tick marks help you revise your estimate?”

Activity 1: Comparemos comparaciones (20 minutes)

Narrative

The purpose of this activity is for students to make sense of different methods they can use to compare three-digit numbers. They analyze the thinking of others and make connections across representations (MP2, MP3). Although students have compared numbers using different representations in prior units, this activity offers them the opportunity to consider using the number line as a tool to compare three-digit numbers. In the synthesis, students will discuss which representation makes it easier to see the comparison. While students could make a case that each of the representations was easier for them, the focus is on Jada’s way, the number line.

MLR8 Discussion Supports. Display sentence frames to support partner discussion. “____ y ______ se parecen porque . . .” // “_____ and _____ are the same/alike because . . .” and “____ y ______ son diferentes porque . . .” // “_____ and _____ are different because . . . .”
Advances: Speaking, Conversing

Launch

  • Groups of 2

Activity

  • “Les pidieron a Diego, Jada y Clare que compararan 371 y 317. Cada uno representó cómo pensó de una manera diferente” // “Diego, Jada, and Clare were asked to compare 371 and 317. They each represented their thinking differently.”
  • “Tómense un momento para examinar sus métodos” // “Take some time to look over their methods.”
  • 2 minutes: independent work time
  • “Discutan con su pareja en qué se parecen y en qué son diferentes los métodos de ellos” // “Discuss with your partner how their methods are the same and different.”
  • 4 minutes: partner discussion
  • “Ahora prueben el método de Jada” // “Now try Jada’s way.”
  • 6 minutes: partner work time

Student Facing

Estos estudiantes compararon 371 y 317, pero ellos representaron sus ideas de maneras diferentes.

Diego

Base ten diagram. 3 hundreds. 7 tens. 1 one.

  • Veo 3 centenas en cada número. 
  • 317 solo tiene 1 decena, pero 371 tiene 7 decenas.
  • \(371 > 317\)

Clare

  • Cada uno tiene 3 centenas.
  • 371 tiene 7 decenas, pero 317 tiene solo 1 decena.
  • \(317 < 371\)

Jada

Scale 300 to 400. 11 evenly spaced tick marks. First tick mark, 300. Last tick mark,400. Point plotted between 310 and 320, labeled 317 and point plotted between 370 and 380.. labeled 371.

  • Puedo ver que 371 está más a la derecha en mi recta numérica, entonces sé que es mayor que 317.
  • \(371 > 317\)

  1. ¿En qué se parecen y en qué son diferentes las representaciones de estos estudiantes?

    Discute esto con un compañero.

  2. Prueba el método de Jada.

    Estima la ubicación de 483 y 443 en la recta numérica. Marca cada número con un punto. Marca el punto con el número que representa.

     Scale 400 to 500 by 10's. 11 evenly spaced tick marks. First tick mark,400. Last tick mark, 500. All tick marks labeled.

  3. Usa un \(>\), un \(=\) o un \(<\) para comparar 483 y 443.

    ______________________________

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Advancing Student Thinking

If students write comparison statements that are not true, ask them to read their statements and consider asking:

  • “¿Como decidiste cuál número era mayor?” // “How did you decide which number was greater?”
  • “¿De qué manera tu afirmación corresponde a la recta numérica?” // “How does your statement match the number line?”

Activity Synthesis

  • “Clare, Diego y Jada representaron cómo pensaron de diferentes formas. ¿Con el método de quién fue más fácil ver que 371 es mayor que 317? Expliquen” // “Clare, Diego, and Jada represented their thinking in different ways. Whose method made it easier to see that 371 is greater than 317? Explain.” (Jada’s because you just have to look at which number is farther to the right. You can see 371 is farther from 0. Diego’s because I use diagrams and I can see quickly that the hundreds are the same and there are more tens, but some things were the same.)
  • As needed, “Jada y Diego escribieron \(371 > 317\), pero Clare escribió \(317 < 371\). ¿Con quién están de acuerdo? Expliquen” // “Jada and Diego wrote \(371 > 317\), but Clare wrote \(317 < 371\). Who do you agree with? Explain.” (They both mean the same thing. 371 is greater than 317, so 317 is less than 371.)

Activity 2: Comparemos de diferentes formas (15 minutes)

Narrative

The purpose of this activity is for students to compare three-digit numbers based on different representations. Students continue to make connections and deepen their understanding of place value as they compare numbers using base-ten diagrams and number lines. They have the opportunity to reflect and share about the representation that makes the most sense to them and how they can use it to justify their thinking (MP3). This understanding will be helpful in upcoming lessons when students choose their own methods to compare three-digit numbers.

Representation: Develop Language and Symbols. Support understanding of the problem by inviting students to act it out. For example, recreate a number line using index cards and string. Have students hold a given number and find their appropriate spot on the number line.
Supports accessibility for: Memory, Conceptual Processing

Launch

  • Groups of 2

Activity

  • “En la actividad anterior, vimos que a Jada le pareció útil usar la recta numérica para explicar que 371 es mayor que 317” // “In the last activity, we saw that Jada found it helpful to use the number line to explain that 371 is greater than 317.”
  • “En esta actividad, van a comparar números de tres dígitos y a explicar cómo pensaron usando la recta numérica” // “In this activity, you will compare three-digit numbers and explain your thinking using the number line.”
  • 6 minutes: independent work time
  • “Comparen sus respuestas con las de un compañero y usen la recta numérica para explicar su razonamiento” // “Compare your answers with a partner and use the number line to explain your reasoning.”
  • 4 minutes: partner discussion

Student Facing

  1. Ubica y marca 420 y 590 en la recta numérica. 

    Number line. Scale 400 to 600. 21 evenly spaced tick marks. First tick mark, 400. Eleventh tick mark, labeled 500.  Last tick mark, 600.

    Usa un \(<\), un \(>\) y un \(=\) para comparar 420 y 590.

    ______________________________

  2. Estima la ubicación de 378 y 387 en la recta numérica. Marca cada número con un punto. Marca el punto con el número que representa. 

     Scale 300 to 400 by 10's. 11 evenly spaced tick marks. First tick mark,300. Last tick mark, 400. All tick marks labeled.

    Usa un \(<\), un \(>\) y un \(=\) para comparar 378 y 387.

    ______________________________

  3. Diego y Jada compararon 2 números. Usa su trabajo para descifrar qué números compararon. Después usa un \(<\), un \(>\) y un \(=\) para comparar los números.

    Base ten diagram. 4 hundreds. 3 tens. 2 ones.

    Base ten diagram.

    Scale 400 to 500., by tens. 11 evenly spaced tick marks, all labeled.. First tick mark, 400. Last tick mark, 500. Point plotted between 420 and 430. Point plotted between 430 and 440.

    ______________________________

  4. ¿Cuál representación fue más útil para comparar los números? ¿Por qué?

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Display the images for 432 and 423.
Base ten diagram. 4 hundreds. 3 tens. 2 ones.
Base ten diagram.
Scale 400 to 500., by tens. 11 evenly spaced tick marks, all labeled.. First tick mark, 400. Last tick mark, 500. Point plotted between 420 and 430. Point plotted between 430 and 440.
  • “¿En qué se parece o en qué es diferente ver estos números en la recta numérica a verlos en un diagrama en base diez?” // “What is the same or different about seeing these numbers on the number line compared to looking at a base-ten diagram?” (The one farthest to the right is greater. With the diagram you have to count to see which one has more. The number with more hundreds or tens is farther to the right on the number line.)

Lesson Synthesis

Lesson Synthesis

“Hoy usamos una recta numérica para comparar números de tres dígitos” // “Today we used a number line to compare three-digit numbers.”

Display 543 and 345.

“Si yo quisiera comparar 543 y 345, ¿cómo me ayudaría la recta numérica a ver cuál es menor y cuál es mayor? Expliquen” // “If I wanted to compare 543 and 345, how would the number line help me see which is less and which is greater? Explain.” (On a number line, 345 would be closer to zero and 543 is located farther to the right of 345. It would be easy to see that 345 is less than 543.)

Cool-down: Compara números en la recta numérica (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.