Lesson 13

Representemos problemas-historia

Warm-up: Observa y pregúntate: Comparemos representaciones (10 minutes)

Narrative

The purpose of this warm-up is to elicit the idea that number lines and tape diagrams can be used to represent the same relationships between numbers, which will be useful when students use tape diagrams and number lines in a later activity to interpret and solve story problems. While students may notice and wonder many things about these representations, the important discussion points are the way both representations show quantities and how they could be used to represent addition.

Launch

  • Groups of 2
  • Display the image.
  • “¿Qué observan? ¿Qué se preguntan?” // “What do you notice? What do you wonder?”
  • 1 minute: quiet think time

Activity

  • “Discutan con su compañero lo que pensaron” // “Discuss your thinking with your partner.”
  • 1 minute: partner discussion
  • Share and record responses.

Student Facing

¿Qué observas? ¿Qué te preguntas?

Number line. Scale 0 to 10 by 1's. Arrow from 5 to 9, labeled 4.

Diagram. One rectangle split into 2 parts. Total length, 9. 1 part, total length, 5. Other part, total length, 4. 

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Cuál ecuación piensan que le corresponde mejor a estos diagramas?” // “What equation do you think best matches these diagrams?” (\(5+4=9\))
  • “¿Dónde vemos el 5 en ambos diagramas?” // “Where do we see the 5 in both diagrams?” (the 5 on the number line is the distance from 0 to the point at 5)
  • “¿Dónde ven el 4 en ambos diagramas?” // “Where do you see the 4 in both diagrams?” (the 4 on the number line is the 4 spaces that were moved to the right)

Activity 1: Clasificación de tarjetas: Representemos historias (20 minutes)

Narrative

The purpose of this activity is for students to make connections between different representations of story problems. Students match stories, equations, number lines, and tape diagrams (MP2, MP7). The synthesis focuses on how the representations are the same and different. Students recognize some representations help to make sense of the story, while others help to show their thinking when finding solutions.

MLR8 Discussion Supports. As students match the cards they should explain their reasoning to their partner. Display the following sentence frames for all to see: “Observé _____, entonces agrupé . . .” // “I noticed ___ , so I matched . . .” Encourage students to challenge each other when they disagree.
Advances: Speaking, Conversing

Required Materials

Materials to Copy

  • Story Problems Card Sort (stories, equations, number lines, diagrams), Spanish

Required Preparation

  • Create a set of cards from the blackline master for each group of 3.

Launch

  • Groups of 3
  • Give each group a set of cards (AP).

Activity

  • “Hemos representado la suma y la resta en la recta numérica” // “We have been representing addition and subtraction on the number line.”
  • “Hoy vamos a pensar en cómo podemos usar diagramas para dar sentido a historias y usar rectas numéricas para mostrar cómo pensamos” // “Today we are going to think about how we can use diagrams to make sense of stories and use number lines to show our thinking.”
  • “Lin y sus amigos estaban haciendo trenes de cubos encajables. Estas historias son sobre todas las formas como ellos construyeron sus trenes” // “Lin and her friends were making connecting cube trains. These stories are about all the ways they built their trains.”
  • “Agrupen cada historia con un diagrama, una recta numérica y una ecuación” // “Match each story to a diagram, a number line, and an equation.”
  • 10 minutes: small-group work time

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Display cards A, E, G, O.
  • “¿En qué se parecen estas representaciones del mismo problema? ¿En qué son diferentes?” // “How are these representations of the same problem the same? How are they different?” (I can see the whole length of the train in the diagram, but I only see a point at 37 on the number line and I don’t see anything but the numbers in the equation. They all show 37 as one part and they all show addition.)

Activity 2: Todo tipo de representaciones (15 minutes)

Narrative

The purpose of this activity is for students to solve story problems using any strategies and representations that make sense to them. In previous lessons, students have used number lines, tape diagrams, and equations to represent situations and solve problems. They will have the opportunity to apply their understanding and make choices about how to make sense of problems and show their thinking. In the synthesis, students reflect on which representations are most helpful to them and make connections across representations (MP2). This question will likely elicit a variety of responses from students which can emphasize the point that students should use representations that make sense to them.

Action and Expression: Develop Expression and Communication. Give students access to two different colors of connecting cubes to create/act out the problem they read and match diagrams.
Supports accessibility for: Conceptual Processing, Memory

Required Materials

Materials to Copy

  • Number Line to 100

Launch

  • Groups of 2
  • Give students access to the blackline master.

Activity

  • “Mientras clasificaban las tarjetas, tuvieron la oportunidad de leer historias y de encontrar las representaciones que les correspondían” // “While doing the card sort, you had a chance to read stories and find matching representations.”
  • “Ahora van a resolver problemas-historia y a representar cómo piensan. Háganlo de una manera que tenga sentido para ustedes” // “Now you are going to solve story problems and represent your thinking in a way that makes sense to you.” 
  • “Si les ayuda, hay rectas numéricas sin saltos y diagramas que pueden usar” // “There are blank number lines and diagrams that you can use if it helps.”
  • “Van a leer los problemas con su compañero, pero luego los van a resolver solos” // “You and your partner will read each problem together and then solve on your own.”
  • “Prepárense para explicar cómo pensaron” // “Be prepared to explain your thinking.”
  • 8 minutes: partner work time
  • As students work, consider asking: “¿En qué se parecen o en qué son diferentes la forma en que ustedes mostraron cómo pensaron y la forma cómo su compañero lo hizo?” // "What is the same or different about the way you showed your thinking and the way your partner showed theirs?"
  • Monitor for students who use a number line and tape diagram for the same problem. 

Student Facing

Resuelve cada problema. Muestra cómo pensaste. Si te ayuda, usa una recta numérica o un diagrama.

  1. Clare empezó con 24 cubos y agregó algunos más. Clare hizo un tren con 42 cubos. ¿Cuántos cubos agregó Clare?

    Number line. Scale 0 to 80 by 5's. 

    Diagram. One rectangle split into 2 parts. Total length, blank. 1 part, labeled blank, total length, blank. Other part, labeled blank, total length, blank.

  2. Andre tenía 37 cubos. Luego él agregó 39 más para hacer un tren más largo. ¿Cuántos cubos usó Andre en total?

    Number line. Scale 0 to 80 by 5's. 

    Diagram. A rectangle split into 2 parts, each labeled blank, with a length of blank. Total length, blank.

  3. Mai quería que su tren fuera de 55 cubos de largo. Por el momento, ella tiene 47. ¿Cuántos cubos más necesita Mai?

    Number line. Scale 0 to 80 by 5's. 

    Diagram. One rectangle split into 2 parts. Total length, blank. 1 part, labeled blank, total length, blank. Other part, labeled blank, total length, blank.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Invite previously selected students display their work side by side for all to see.
  • “¿En qué se parecen o en qué son diferentes las representaciones de _____ y _____?” // “What was the same or different between _____ and _____ representations?”
  • Help students make connections across representations by highlighting the places where they see the solution in each.
  • “¿Cuáles representaciones les parecen más útiles?” // “Which representations do you find most helpful?” 

Lesson Synthesis

Lesson Synthesis

“Hoy resolvieron problemas y compararon representaciones. Han aprendido cómo pueden usar diagramas para darles sentido a los problemas-historia y de qué manera las rectas numéricas les pueden ayudar a mostrar cómo pensaron” // “Today you solved problems and compared representations. You have learned how you can use diagrams to make sense of story problems and how number lines can help you show your thinking.”

“En esta unidad, hemos dedicado bastante tiempo a estudiar la suma y la resta en la recta numérica. Cuéntenle a su compañero una manera en la que la recta numérica les ayudó a entender una estrategia o la manera como alguien pensó” // “We've spent a lot of time looking at addition and subtraction on the number line during this unit. Tell a partner 1 way the number line helped you understand a strategy or someone else’s thinking.”

Cool-down: El tren de Clare (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.

Student Section Summary

Student Facing

En esta unidad, resolvimos todo tipo de problemas y los representamos de distintas formas. Representamos la suma y la resta en la recta numérica e hicimos conexiones con ecuaciones y estrategias. Cuando se suma y se resta hasta 100, podemos usar diagramas, bloques en base diez, rectas numéricas y ecuaciones para dar sentido a historias y situaciones, y para mostrar cómo pensamos. Todos están conectados.

Number line. Scale 0 to 10 by 1's. Arrow from 5 to 9, labeled 4.
Diagram. One rectangle split into 2 parts. Total length, 9. 1 part, total length, 5. Other part, total length, 4. 
.
Two base ten diagrams. Top diagram, 3 tens, 3 ones. Bottom diagram, 4 tens, 5 ones.
Number Line. Scale 0 to 100 by 5’s. Arrow from 33 to 43, labeled 10. Arrow from 43 to 53, labeled 10. Arrow from 53 to 63, labeled 10. Arrow from 63 to 73, labeled 10. Arrow from 73 to 78, labeled 5.