Lesson 3

Relacionemos la suma y la resta hasta 20

Warm-up: Conversación numérica: Suma y resta (10 minutes)

Narrative

This Number Talk encourages students to think about the relationship between addition and subtraction to mentally solve problems. This builds on the work in the previous lesson where students used the relationship between addition and subtraction to find unknown numbers in equations. The understanding elicited here will be helpful later in the lesson when students find the value to make an equation true.

Launch

  • Display one expression.
  • “Hagan una señal cuando tengan una respuesta y puedan explicar cómo la obtuvieron” // “Give me a signal when you have an answer and can explain how you got it.”
  • 1 minute: quiet think time

Activity

  • Record answers and strategy.
  • Keep expressions and work displayed.
  • Repeat with each expression.

Student Facing

Encuentra mentalmente el valor de cada expresión.

  • \(7+3\)
  • \(10-7\)
  • \(10-2\)
  • \(10-4\)

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿De qué forma pensar sobre sumas les ayudó a restar?” // “How did thinking about addition help you subtract?” (I thought about what number I could add to the 4 to make 10. Since I know 4 + 6 = 10 then I knew 10 – 4 = 6)
  • If needed, use connecting cubes to represent students’ thinking.

Activity 1: Conozcamos “Qué hay a mis espaldas: 20 cubos” (20 minutes)

Narrative

In this activity, students learn stage 3 of the What’s Behind My Back center. In this new stage, called 20 cubes, students work with 20 cubes, organized into two towers of 10 cubes. One partner snaps the tower and puts one part behind their back and shows the other part to their partner. The other partner figures out how many cubes are behind their partner’s back. Students record an addition equation with a blank to represent the missing cubes. Students may write equations with the blank as the first or second addend. Ask students to explain what each number and blank in the equation represents in the context of the center activity (MP2).

MLR7 Compare and Connect. Synthesis: Invite students to discuss connections between the different approaches. Ask, “¿Qué tienen en común estas estrategias? ¿En qué son diferentes?” // “What did these strategies have in common? How were they different?”
Advances: Representing, Conversing
Representation: Internalize Comprehension. Synthesis: Invite students to identify which details were important or most useful to pay attention to. Display the sentence frame, “Para descubrir cuántos cubos hay detrás de la espalda de mi compañero, yo puedo...” // “To figure out how many cubes are behind my partner’s back, I can . . . .“
Supports accessibility for: Visual-Spatial Processing

Required Materials

Materials to Gather

Materials to Copy

  • What's Behind My Back Stage 3 Recording Sheet, Spanish

Launch

  • Groups of 2
  • Give each group 20 connecting cubes and a recording sheet.
  • “Vamos a jugar ‘Que hay a mis espaldas’, esta vez con 20 cubos” // “We are going to play What’s Behind My Back, this time with 20 cubes.”
  • “¿Cómo descubrieron cuántos cubos encajables había detrás de la espalda de su pareja la última vez?” // “How did you figure out how many connecting cubes were behind your partner’s back last time?” (I thought about an addition expression that would make 10. I subtracted what they showed me from 10.)
  • “Juguemos una ronda con 20” // “Let’s play a round with 20.”
  • Show students 2 towers of 10 cubes. Put the towers behind your back. Break off and display 8 of the cubes.
  • “Esta vez, cuando jueguen, antes de descifrar cuántos cubos hay detrás de la espalda de su compañero, anoten una ecuación de suma con un espacio en blanco para representar los cubos desconocidos. ¿Qué ecuación debemos anotar?” // “This time when you play, you are going to record an addition equation with a blank to represent the missing cubes, before you figure out how many are behind your partner’s back. What equation should we record?” (\(8+\underline{\hspace{.5 cm}}=20\))
  • 30 seconds: quiet think time
  • Share responses.
  • “¿Cuántos cubos hay a mis espaldas? ¿Cómo lo saben?” // “How many cubes are behind my back? How do you know?” (12 because 2 more makes 10 and then here’s another tower of 10.)
  • 30 seconds: quiet think time
  • 30 seconds: partner discussion
  • “Jueguen con su compañero. No olviden anotar una ecuación en cada ronda” // “Play with your partner. Don’t forget to record an equation each round.”

Activity

  • 10 minutes: partner work time

Activity Synthesis

  • Display 9 cubes.
  • “¿Cuál es una ecuación de suma que yo puedo escribir para representar el número de cubos que ustedes conocen y el número de cubos que tienen que descubrir?” // “What’s an addition equation I can write to represent the number of cubes you know and the number of cubes you need to figure out?” (9 + _____ = 20)
  • “Cuéntenle a su compañero cómo pueden saber cuántos cubos faltan” // “Tell your partner how you can figure out how many cubes are missing.”
  • Monitor for students who talk about making a 10 and knowing there is one more 10.
  • Share responses.

Activity 2: Hagamos que la ecuación sea verdadera (15 minutes)

Narrative

The purpose of this activity is for students to find the value that makes an addition or subtraction equation true, with totals of 20. Students may use whatever method makes sense to them. In the launch, students work with a new partner and fill in the unknown addend in the equations on their recording sheet from Activity 1.

Required Materials

Materials to Gather

Launch

  • Groups of 2: different than the previous activity
  • Give groups access to connecting cubes.
  • “Van a encontrar el número que hace que cada ecuación sea verdadera. Intercambien hojas de registro con alguien con quien no hayan jugado ‘Qué hay a mis espaldas’. Escriban el número que hace que cada ecuación sea verdadera. Prepárense para compartir con su pareja cómo encontraron cada número” // “You are going to find the number that makes each equation true. Switch recording sheets with someone who you didn’t play What’s Behind My Back with. Fill in the number that makes each equation true. Be prepared to share with your partner how you found each number.”
  • 3 minutes: independent work time
  • “Compartan su trabajo con su compañero. Escojan una ecuación y explíquenle cómo encontraron el número que la hace verdadera” // “Share your work with your partner. Choose 1 equation and explain to them how you found the  number that makes it true.”
  • 3 minutes: partner discussion

Activity

  • “Trabajen en sus libros para encontrar el número que hace que cada ecuación sea verdadera” // “Work in your book to find the number that makes each equation true.”
  • 5 minutes: independent work time
  • Monitor for students who look for ways to make 10.

Student Facing

Encuentra el número que hace que la ecuación sea verdadera. 

  1. \(4+\underline{\hspace{1 cm}}=20\)

  2. \(20-\underline{\hspace{1 cm}}=4\)

  3. \(6+\underline{\hspace{1 cm}}=20\)

  4. \(20-\underline{\hspace{1 cm}}=10\)

  5. \(\underline{\hspace{1 cm}}+3=20\)

  6. \(20-15=\underline{\hspace{1 cm}}\)

  7. \(20-\underline{\hspace{1 cm}}=18\)

  8. Si te queda tiempo:  \(\underline{\hspace{1 cm}}-5=20\)

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Invite selected students to show their thinking for \(\underline{\hspace{1 cm}}+3=20\) and \(20-\underline{\hspace{1 cm}}=18\).
  • “Para encontrar la respuesta, ¿cómo les ayudó pensar sobre decenas?” // “How did thinking about a ten help them find their answer?” (They knew 20 is 2 tens so they used 1 of the tens to make the problems easier.)

Lesson Synthesis

Lesson Synthesis

“Hoy, encontramos el número desconocido en ecuaciones que hace que estas sean verdaderas” // “Today, we found the unknown number in equations that makes them true.”

Math Community
Display Math Community poster. Explain to students that norms are expectations that help everyone in the room feel safe, comfortable, and productive doing math together.

“Vamos a hacer una lista de normas para hacer matemáticas juntos. Un ejemplo de una norma es 'Escuchar cuando otros comparten sus ideas'. ¿Qué otras normas deberíamos establecer para nuestra clase?” // “We are going to make a list of norms for how we do math together. One example of a norm is ‘Listen as others share their ideas.’ What other norms should we set for our class?”

Share and record responses.

Cool-down: Ecuaciones verdaderas (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.